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EXECUTIVE SUMMARY

This report describes the current findings and

status of Tracor's ongoing investigation of the multiple target

tracking problem. In particular, we have concentrated on the

problem of tracking multiple targets with data gathered by

distributed, passive acoustic sonobuoys. In this study, the

multiple target tracking problem has been initially divided

into two separate tasks: (1) the development of an efficient,

highly accurate, single target tracking algorithm; and (2) the

development of a non-parametric data sorting technique for

separating a sonobuoy's multiple target data stream into sets

of individual target data. Also included as an appendix is a

detailed discussion of an experimental design technique known

as Response Surface Methodology (RSM) that was used to quantify

the single target tracking algorithm's response to variations

in signal gathering and signal processing parameters.

In the past, Tracor has developed both a Hybrid

Tracking Algorithm (HTA) and a Sequential algorithm to perform

the single target tracking task. The former algorithm is known

as a hybrid algorithm because it uses a batch tracker to

initialize the tracking solution, and after the track has been

successfully initialized, it automatically switches to a

sequential tracker to continue updating the target's

trajectory. The current investigation has sought to improve

further both trackers' performances, and with that objective

the following modifications were made to their prior designs.

(1) The Sequential's initializer has been

modified to use a Standard Kalman Filter

plus a one-dimensional, numerical search
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technique to reduce the number of iterations

needed for the totally sequential tracker to

initialize a track.

(2) A batch-type, initial guess algorithm has

been developed which uses the initial

frequency and bearing measurements from two

or more sensors in a "crossed-bearings,

crossed frequencies" technique to provide

reasonable guesses of the target's position

and velocity to both the HTA's and the

Sequential's initializer.

(3) The target's dynamic acceleration model has

been changed to a normal-tangential (or

AcOOSSion For along track-across track) acceleration model

NTIS -- to better describe possible target maneuvers.

DTIC TA13

UnarL= !U"
U< u (4) A mobile sensor model has been added to the

tracker to allow possible sensor motions

-y - created by either sensor drift or by mobile

- -. - -~sensor platforms.

. """(5) Finally, range, time-difference of arrival,

Doppler ratio, and Doppler difference

measurements have been added to the tracker

to augment the frequency and bearing

measurement models that could be used

initially.

In order to extend the HTA or other single target

trackers into the area of multiple target tracking, Tracor

initiated an investigation into the possibility of using

ii



cluster analysis techniques to sort multiple target data at the

individual sonobuoy level. Cluster analytic methods form a
branch of numerical taxonomy which can be used to search

quantitatively for natural groups or clusters within a set of
objects which have been described by an arbitrary set of
descriptive attrivutes. This initial investigation has shown
the application of cluster analysis methods to be a potentially
feasible means for solving the multiple target data sorting
problem. From our cluster analysis investigation, the
following configuration for processing the data has yielded the

best results:

(1) Four attributes have been used to describe

each of the multiple target measurements:
(a) Measurement time tag

(b) Frequency estimate

(c) Cosine of the bearing estimate
(d) Sine of the bearing estimate

(2) Each of these four attributes were

normalized to lie between 0 and 1.

(3) Euclidean distances were used to generate a

resemblance matrix of dissimilarity

coefficients between each measurement pair.

(4) Hierarchical, single-linkage clustering

algorithms have been shown to be the most

effective for sorting the data.

The cluster analysis techniques have been shown
to be effective at performing the following tasks:

iii
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(1) Outlier identification for single target

data sets.

(2) Sorting sets of multiple target data into

individual target data sets.

(3) Sorting multiple signals from ambient noise

in simulated DIFAR power spectra.

Unfortunately, at their present stage of

development, the cluster analysis techniques studied require

that some a priori knowledge of the data be available before

their results can be properly interpreted. The clustering

results are currently output as tree diagrams and require the

analyst to carefully study the results to pick the optimal set

of clusters. However, it is felt that with further

investigation and development, these clustering techniques can

be automated so that "intelligent" operator interpretations of

the results will not be required. Then, these techniques can

be used in real systems.

For both the single target tracking and the data

sorting investigations, a non-Guassian, DIFAR data generation

model was used to simulate the narrowband frequency and bearing

measurements. This DIFAR simulation models variations in the

signal-to-noise ratio (SNR) of the signal received by the

sonobuoy that are caused by propagation losses, smearing

losses, and random variations in both the target's radiated

levels and in ambient noise levels. The error distributions

from this simulation program are non-Gaussian, so more

realistic investigations of tracker performance and data

sorting performance can be undertaken than would be possible

with a simpler Gaussian model.

iv
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Finally, this report contains a detailed

discussion of the RSM techniques used to quantitatively analyze

HTA's responses to variations in data gathering and data

processing parameters. Specifically, this study investigated

how changes in target signal strength, changes in sonobuoy

baseline distances, and changes in processor integration time

for generating frequency and bearing estimates affect the

overall tracking performance of Tracor's HTA. This

investigation was initiated not only to characterize HTA's

tracking performance, but it was also meant to show how RSM or

other experimental design techniques can be used to quantify

various algorithms' responses to variations in key parameters

so that they can be more effectively evaluated or compared

against other possible alternatives.

v



Trm Applie Scimce

TABLE OF CONTENTS

Section Page

EXECUTIVE SUMMARY i

LIST OF ILLUSTRATIONS xi

LIST OF TABLES xv

1.0 INTRODUCTION 1

1.1 Hybrid and Sequential Algorithms'

Modifications 2

1.2 Simulation of Single Target Data 4

1.3 Simulation of Multiple Target Data 4

1.4 Multiple Target Data Sorting 5

1.5 Hybrid Algorithm Sensitivity Study 7

1.6 Report Organization 8

2.0 IMPROVEMENTS TO THE TWO TRACKING

ALGORITHMS 9

2.1 Improved Sequential Initialization

Algorithm 9

2.2 Simultaneous Bearing and Frequency

Initial Conditions Algorithm 13

2.3 Constant Tangential and Normal Accel-

eration Model 16

2.4 Sensor Motion Model 20

2.5 New Data Models 21

2.6 Test Evaluation Criteria 22

2.7 Test Scenarios 25

2.8 Test Results 25

2.9 Conclusions and Recommendations 28

3.0 SIMULATION OF SINGLE TARGET DATA 45

3.1 Passive Narrowband Frequency and

Bearing Simulator '5

vii



Tracm Applied Sciemes

TABLE OF CONTENTS -- Continued

Section Page

3.2 SNR Calculations for the Output

Measurements 48

3.3 Simulated Measurement Error Curves 52

4.0 SIMULATION OF MULTIPLE TARGET DATA 57

4.i Multiple Target Scenarios 57

4.1.1 Scenario One 57

4.1.2 Scenario Two 60

4.2 Multiple Linetracker Data 60

4.3 Simulated Multiple Target Freuqency

Spectra 63

5.0 CLUSTER ANALYSIS FOR MULTIPLE TARGET

DATA SORTING 69

5.1 Definition of Objects and Attributes

for the Clustering Study 72

5.2 Standardization of the Attributes 73

5.3 Resemblance Matrix 74

5.4 Clustering Algorithm 77

5.5 Optimal Clustering Techniques for the

Multiple Target Problem 78

5.6 Clustering to Remove Outliers from

Single Target Data 81

5.7 Clustering to Sort Multiple Target,

Multiple Linetracker Data 91

5.7.1 Multiple Linetracker Cluster Results

for Scenario 1 92

5.7.2 Multiple Linetracker Cluster Results

for Scenario 2 101

viii



ea Apie Scin

TABLE OF CONTENTS -- Continued

Section Page

5.7.3 Conclusions from Using the Single

Linkage Clustering Algorithm to Sort

Simulated Multiple Linetracker Data 104

5.8 Clustering Frequency Spectra Data:
Establishing Frequency Tracks 105

5.8.1 Results from Clustering Multiple Target

Frequency Spectra for Scenario 1 105

5.8.2 Results from Clustering Multiple Target

Frequency Spectra for Scenario 2 118

5.8.3 Conclusions from Using the Single

Linkage Algorithm to Sort

Simulated Frequency Spectra Data 119

5.9 Conclusions on the Use of Cluster

Analysis for Data Sorting in

the Multiple Target Problem 120

6.0 RECOMMENDATIONS FOR FUTURE INVESTIGATIONS 123

6.1 Continued Search for the Optimal

Clustering Techniques 123

6.2 Automating the Multi-Target Clustering

Algorithm 125

6.3 Intersensor Data Matching Procedure 126

6.4 Other Problems 128

6.4.1 Identification of Redundant Data Sets 128

6.4.2 Compensation for Data Dropout 129

6.4.3 Long Range Research Topics 130

7.0 REFERENCES 133

ix



Tracor Appied Sciences

TABLE OF CONTENTS -- Concluded

Section Page

APPENDIX

A RESPONSE SURFACE METHODOLOGY (RSM) STUDY

OF THE HYBRID TRACKING ALGORITHM

A.0 INTRODUCTION A-I

A.I Description of Independent Factors A-2

A.1.1 Sensor Separation Distance (SEP) A-2

A.1.2 Integration Time (INT) A-3

A.1.3 Signal-to-Noise Ratio (SNR) A-3

A.2 Response (Dependent) Factors for

RSM Study A-4

A.2.1 Average Distance Error (ADE) A-5

A.2.2 Convergence Time (CT) A-5

A.2.3 Predicted Distance Error A-6

A.3 Orthogonal Central Composite Design (OCCD) A-6

A.4 Description of the Two OCCD's Used A-8

A.4.1 Original OCCD A-8

A.4.2 Revised OCCD A-13

A.4.2.1 Summary of Results from the Revised OCCD A-14

A.5 RSM Results and Analyses of These Results A-21

A.5.1 Description of RSM Tables A-21

A.5.2 RSM Analysis of the Hybrid's ADE Response A-28

A.5.3 RSM Analysis of the Hybrid's CT Response A-35

A.5.4 RSM Analysis of the Hybrid's PDE Response A-41

A.6 Conclusions From This RSM Study A-49

x



Tram Appl Scec

LIST OF IULLUSTRATIONS

Figure Page

2.1 NEW HYBRID TRAJECTORY (SCENARIO 1) 30

2.2 OLD HYBRID TRAJECTORY (SCENARIO 1) 31

2.3 NEW SEQUENTIAL TRAJECTORY (SCENARIO 1) 32

2.4 OLD SEQUENTIAL TRAJECTORY (SCENARIO 1) 33

2.5 NEW HYBRID POSITION ERROR (SCENARIO 1) 34

2.6 OLD HYBRID POSITION ERROR (SCENARIO 1) 35

2.7 NEW SEQUENTIAL POSITION ERROR (SCENARIO 1) 36

2.8 OLD SEQUENTIAL POSITION ERROR (SCENARIO 1) 37

2.9 NEW HYBRID TRAJECTORY (SCENARIO 2) 38

2.10 OLD HYBRID TRAJECTORY (SCENARIO 2) 39

2.11 NEW SEQUENTIAL TRAJECTORY (SCENARIO 2) 40

2.12 NEW HYBRID POSITION ERROR (SCENARIO 2) 41

2.13 OLD HYBRID POSITION ERROR (SCENARIO 2) 42

2.14 NEW SEQUENTIAL POSITION ERROR (SCENARIO 2) 43

3.1 GENERAL PROCESSOR FOR DIFAR BUOY 47

3.2 STANDARD DEVIATION OF THE SIMULATED

FREQUENCY ERRORS VS. SNR 54

3.3 STANDARD DEVIATION OF THE SIMULATED

BEARING ERRORS VS. SNR 55

4.1 SCENARIO 1, 3 TARGETS 58

4.2 SCENARIO 2, 2 TARGETS 61

4.3 MULTIPLE TARGET FREQUENCY SPECTRA

GENERATION BLOCK DIAGRAM 67

5.1 CLUSTERING TREE DIAGRAM FOR DATA PLUS

OUTLIERS FROM BUOY II FOR TARGET I

OF SCENARIO 1 86

5.2 CLUSTERING TREE DIAGRAM FOR DATA PLUS

OUTLIERS FROM BUOY I FOR TARGET I

OF SCENARIO 1 89

xi



Trm Alliled Scices

LIST OF IULLUSTRATIONS -- Continued

Figure Page

5.3 TRUE AND SIMULATED FREQUENCY VS. BEARING

VS. TIME PLOT FOR ALL THREE TARGETS

OBSERVED BY SENSOR I OF SCENARIO 1 96

5.4 CLUSTERING TREE DIAGRAM FOR MULTIPLE

LINETRACKER DATA FROM BUOY I OF

SCENARIO 1 97

5.5 PLOT OF SIMULATED MULTIPLE TARGET

FREQUENCY SPECTRA FOR BUOY I OF

SCENARIO 1 (3 TARGETS) 110

5.6 CLUSTERING TREE DIAGRAM FOR MULTIPLE

TARGET FREQUENCY SPECTRA FROM

BUOY I OF SCENARIO 1 111

A.1 SCENARIOS FOR ORIGINAL OCCD A-1i

A.2 GEOMETRICAL REPRESENTATION OF THE

REVISED OCCD A-16

A.3 SCENARIOS FOR REVISED OCCD A-17

A.4 RESPONSE SURFACE PLOT OF LOG 1 0 (ADE)

FOR SNR = 68.704 A-32

A.5 CONTOUR PLOT OF LOGI0 (ADE) FOR

SNR - 68.704 A-34

A.6 RESPONSE SURFACE PLOT OF LOGI0 (CT)

FOR SNR = 68.704 A-38

A.7 CONTOUR PLOT FOR LOGI0 (CT) FOR

SNR = 68.704 A-40

A.8 RESPONSE SURFACE PLOT OF PDE FOR

SNR - 68.704 A-44

A.9 CONTOUR PLOT OF PDE FOR SNR - 68.704 A-46

xii



LIST OF IULLUSTRATIONS -- Concluded

Figure Page

A.1O RESPONSE SURFACE PLOT OF PDE FOR

SNR - 76.0 A-47

A.11 CONTOUR PLOT OF PDE FOR SNR - 76.0 A-48

A.12 RESPONSE SURFACE PLOT OF PDE FOR

SNR - 83.296 A-50

A.13 CONTOUR PLOT OF PDE FOR SNP. - 83.296 A-51

xiii



Tacr ppl ed Sc ie ce

LIST OF TABLES

Table Page

2.1 SCENARIO I TRACKING RESULTS 26

2.11 SCNEARIO 2 TRACKING RESULTS 26

4.1 DESCRIPTION OF SCENARIO 1 59

4.11 DESCRIPTION OF SCENARIO 2 62

4.111 SIMULATED MULTIPLE LINETRACKER DATA

FOR SENSOR I FROM SCENARIO 1 64

5.1 SIMULATED DATA WITH OUTLIERS FROM

BUOY II FOR TARGET 1 OF SCENARIO 1 85

5.11 SIMULATED DATA WITH OUTLIERS FROM

BUOY I FOR TARGET 1 OF SCENARIO 1 88

5.111 MULTIPLE LINETRACKER DATA FROM BUOY I

OF SCENARIO 1 94

5. IV SIMULATED MULTIPLE TARGET FREQUENCY
SPECTRA FROM BUOY I OF SCENARIO 1 106

A.I ORIGINAL OCCD A-10

A.I1 REVISED OCCD A-15

A.III DESCRIPTION OF REVISED OCCD'S SCENARIO A-18

A.IV RESPONSES FOR EACH TEST DESIGN LEVEL

FOR THE REVISED OCCD A-20

A.V RSM RESULTS FOR LOG1 0 (ADE) A-29

A.VI DEFINITION OF CONTOUR SYMBOLS FOR

LOGI 0 (ADE) A-33

A.VII RSM RESULTS FOR LOG1 0 (CT) A-36

A.VIII DEFINITION OF CONTOUR SYMBOLS FOR

LOGI0 (CT) A-39

A.IX RSM RESULTS FOR PDE A-42

A.X DEFINITIONS OF CONTOUR SYMBOLS FOR PDE A-45

xv



Trr Applied Scences

1.0 INTRODUCTION

For many anti-submarine warfare (ASW) encounters,

the U.S. Navy is very concerned with the problem of detecting,

classifying, and tracking underwater submarines from data

gathered by passive sonobuoy patterns. One area where Tracor

has been heavily involved is the area of target tracking or

localization.

Tracor has developed several target tracking

algorithms, but they have dealt only with the question of

tracking one target from single target data gathered by various

acoustic signal processors. Another problem of great

importance to the Navy concerns the questions of detecting,

classifying, and tracking multiple targets when they are

observed in tracking environments.

At Tracor, this multiple target tracking problem

has initially been divided into two distinct tasks. First, a

highly accurate, single target tracking algorithm has been

developed to determine current capabilities for localizing

single targets. Separate from this development, an investi-

gation has begun into the question of sorting and classifying

passive, multiple target data into sets of data for each

target. As this investigation continues, these two questions

will have to be considered together along with many other

problems. However, for now, only the development of an accu-

rate and reliable single taiget tracking algorithm along with

an initial approach for sorting data in the multiple target

problem have been considered. The following subsections

summarize the work performed under the current contract in

these two basic task areas.



Tracer Appled Sc mces

1.1 Hybrid and Sequential Algorithms' Modifications

Two different algorithms have been developed in

the past to track one target. One algorithm, the Hybrid

Tracking Algorithm, uses a weighted, least-squares, "batch "

procedure to initialize the track and switches to an Extended

Kalman Filter to continue tracking after the tracker has been

successfully initialized. The other, a Sequential algorithm,

has also been developed. This algorithm used an Extended

Kalman Filter to both initialize the tracker and to continue

tracking the target after successful initialization has been

achieved. Both algorithms performed well, but it was felt that

both could be modified to improve their tracking accuracies,

range of applications, and tracker initialization

characteristics. Following is the list of modifications

implemented to improve these tracking algorithms.

(1) The sequential initializer was improved by

using a Standard Kalman Filter plus a

numerical, one-dimensional search technique

to find the optimal initial state for the

target. This procedure proved to be

successful because fewer data points and

fewer iterations (relative to the old

design) were required for the new sequential

initializer to converge onto an acceptable

set of initial conditions for the target.

(2) An inital guess algorithm was developed to

use the sonobuoys' data to provide a better

initial guess of the target's state. This

algorithm is used by both the Sequential's

and Hybrid's initializers.

2
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Previously, an arbitrary point was picked

and the initializers sought to change this

guess until a suitable set of initial

conditions was found. Now the initial guess

algorithm uses overlapping frequency and

bearing measurements from at least two

different sonobuoys in a "crossed-bearing,

crossed-frequency" procedure to generate

reasonable least squares estimates of the

target's position and velocity. This

initial guess procedure has proved to be

more accurate and faster than the previous

method.

(3) The target's motion model has been changed

from a Cartesian acceleration model to a

normal-tangential model. In this context,

the tangential direction is defined to lie

parallel to the target's course heading and

the normal direction lies perpendicular to

this course heading. This new acceleration

model has been shown to be better than the

Cartesian one for modeling both maneuvering

and non-maneuvering target trajectories.

(4) A mobile sensor model has replaced the old

stationary model used for positioning the

sonobuoys. This allows the tracking algo-

rithms to process data from drifting sensors

as well as data from mobile sensors such as

hull-mounted and towed-array systems.

3
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(5) New data models were also added to the

trackers' measurement models. In the past,

only frequency and bearing measurements have

been used for localization by the Hybrid and

Sequential trackers. Now range, time-

difference of arrival, Doppler ratio, and

Doppler difference measurements can also be

processed by these trackers.

1.2 Simulation of Single Target Data

The data generation program used for these

studies simulated non-Gaussian, frequency and bearing estimates

for narrowband signals. This program simulated a comb filter
bank followed by a square law detector to generate an omni-

directional power versus frequency spectrum. A frequency

estimate was obtained from this power spectrum by a peak-

picking procedure which selects the single comb filter bin in

the spectrum that contained the most omnidirectional power.
After the frequency estimate was obtained, an arctangent

estimator used the simulated x and y channel power associated

with this chosen frequency bin to generate a bearing estimate.

If the signal strength of these estimates exceeded a set

threshold level, the estimates were accepted; if not, no

measurements were passed to the tracking algorithm.

1.3 Simulation of Multiple Target Data

To study the multiple target sorting problem, a

suitable data base had to be developed. A single target data

simulation program already existed, so it was decided to build

programs that could merge several different single target data

sets into one simulated multiple target data set. Initially,

4
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one program was developed that merged the output frequency and

bearing estimates for each simulated target into one set of

measurements for all of the targets. However, some theoretical

difficulties were encountered with this approach, so a second

program was developed. The second program merged the power

versus frequency spectrum for each of the targets into one

single spectrum. The data sorting techniques were then

employed at this multiple target, power spectrum level to

perform the sorting task. Data from both simulations were used

in the multiple target, data sorting investigation.

1.4 Multiple Target Data Sorting

Cluster analysis techniques have been chosen for

this initial investigation of the data sorting problem

associated with tracking multiple targets. This technique is

used in numerical taxonomy to search for natural groups or

clusters from a set of objects which have been described by an

arbitrary set of descriptive attributes. No a priori func-

tional form or conditional relationship is assumed for the

objects and their attributes. Instead, the observer must only

pick the set of attributes that are to be used to describe the

objects and the clustering algorithms then search for natural

groupings of the objects based on these attributes. Extensive

development and use of these clustering techniques can be found

in the anthropological, biological, and social sciences.

Five different non-overlapping, hierarchical

clustering algorithms have been investigated. In addition,

five different data normalization techniques were studied, as

well as seven different methods for generating similarity-

dissimilarity coefficients. All of these techniques are

described in detail in Section 5. Based on the results

5
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obtained, the following conclusions have been formed from this

investigation:

(1) Attribute data should be normalized so that

the range of values lies between 0 and 1.

(2) The average Euclidean distance dissimilarity

coefficient proved to be the most useful for

generating the resemblance matrix for the

data sorting problem.

(3) The single linkage clustering methods

yielded the best results for the data

sorting problem.

To sort the data, a set of attributes must be

used to describe the objects of interest. For the passive data

simulated in this investigation, the following set of attri-

butes was found to be the most useful for sorting the multiple

target measurements.

(1) Time tag of the measurement estimates

(2) Frequency estimates

(3) Cosine of the bearing estimate

(4) Sine of the bearing estimate

When the multiple target data have been described with these

attributes, the single linkage clustering algorithm has been

successful in performing the following functions:

6
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(I) Identifying outliers to be removed from the

data set.

(2) Sorting multiple target measurements into

sets of individual target data.

(3) Sorting multiple signals from ambient noise

in simulated power spectra data.

These results have been quite encouraging. At

present, however, the algorithm is cumbersome and requires

considerable operator interaction. The difficulties appear to

be traceable to attribute normalization problems. The normal-

ization used for this study permitted successful clustering of

acoustic data, but a priori knowledge of the data was required

to set appropriate dissimilarity coefficient thresholds to

properly define target clusters. Nonetheless, valid data

clustering was demonstrated and it appears very promising that

efficient, automatic algorithms based on cluster analysis can

be developed to sort acoustic data from multiple targets.

1.5 Hybrid Algorithm Sensitivity Study

A study which used Response Surface Methodology

(RSM) techniques was initiated to quantify the tracking

response of the Hybrid algorithm to external factors such as

sonobuoy separation distance, target signal strength, and data

integration time. The RSM algorithms fit a polynomial hyper-

surface in a classical least squares sense to the data obtained

from a chosen test design. After a suitable least squares

solution has been found, one can then analytically solve for

the extremum of this fitted surface. The analyst may also

perform eigenvalue analysis to determine whether the extremum

7
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is a minimum, a maximum, or a saddlepoint and may also search

for the principle axes to determine directions of maximum and

minimum change. Finally, with RSM techniques, one can plot the

response surface and its associated contour plot to visually

investigate operating range trade-offs. From this analysis,

one can determine the optimal operating conditions for a

process, as well as compare the response of one process against
another process (for instance, the Hybrid's tracking response

versus the Maximum Likelihood Estimator's tracking response).

Results of this RSM analyis of the Hybrid tracker's response to

variations in certain data processing parameters are presented

in Appendix A.

1.6 Report Organization

The remainder of this report presents detailed

information on the work summarized above. Section 2 describes

the modifications made to the Hybrid and Sequential algorithms

to improve their tracking performances. Section 3 contains a

detailed description of the simulated DIFAR model used to

generate single target data. The two techniques for simulating

multi-target data are found in Section 4. Detailed

descriptions of cluster analysis techniques and of their

applications to the multi-target problem are provided in

Section 5. Section 6 suggests some recommended research tasks

for future investigation, and Section 7 presents a list of

references. Finally, the results of the RSM sensitivity

analysis of Hybrid's tracking performance are furnished in

Appendix A.

8
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2.0 IMPROVEMENTS TO THE TWO TRACKING ALGORITHMS

Under this contract, several modifications were

made to both the Sequential and Hybrid trackers to improve

their overall effectiveness. Efforts were made to improve the

track initialization characteristics for both trackers with

special interest taken in improving the Sequential's

initializer. Secondly, a new acceleration model was developed

to improve both algorithms tracking performance for maneuvering

and non-maneuvering trajectories. Lastly, new measurement

types and a new mobile sensor model were added to the trackers

to increase the possible application areas for both Trackers.

Descriptions of these modifications and their ensuing affect on

tracker performance are found in this section.

2.1 Improved Sequential Initialization Algorithm

One task in this study sought to improve the

Sequential's initializer in an effort to make it more

competitive with the Hybrid. Previous results (Reference 1)

have shown that the Hybrid outperformed the Sequential in

initializing the target tracks from the initial measurement

data. After initialization, both trackers' performance was

essentially equal. The Hybrid initializer utilized a "batch"

filter along with a numerical, one-dimensional search procedure

to produce initial state estimates for the target. The

Sequential algorithm used an Extended Kalman Filter (EKF) and

an iteration scheme to produce estimates of the target's

initial state. It was felt that the Sequential's initializer

could be greatly improved by replacing the EKF with a Standard

Kalman Filter (SKF) and augmenting it with the same

one-dimensional search procedure used by the Hybrid's batch

initializer. This new Sequential initialization technique has

9
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been developed and incorporated in the tracker. It has proved

to be very successful and has made this algorithm more

competitive with the Hybrid.

The new Sequential initialization algorithm is a

U-D Covariance Factorization of the SKF (Reference 2). Like

the batch initializer, the Sequential initializer uses the

tracking filter to find a search direction that minimizes the

sum of squares of the measurement residuals. The algorithm

used to estimate the search direction is given below.

(a) Provide an initial guess for the target's

initial state vector x0 , state covariance

matrix Po and state noise covariance Q.

(b) Decompose P0 into factors Do and
U-1.

00

(c) Initialize the measurement to k - 0. Set

the initial search direction to so = 0.

(d) Set the measurement counter to k = k + 1 and

get a measurement set tk, Yk"

(e) Solve the following differential equations

x - f(x,t)

where f(x,t) is the target's motion

model written as a system of first

order equations.

s-As

10
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where

A af(Xt)ax

d (U-1D-1U -T) = U-D -U -+U-ID- uT+U- D-
1 3

- T

7 -t =AU- '.D-U T u-Tu- D- U" T AT +Q

with initial conditions

X - k-k

S -- Sk_

D-I = I

k-1

(f) Compute the following relationships

rk yk - g(xk' tk)

where 9(xk, tk) is the computed

measurement model at time tk

h qg(x,t)
hk = x t = tk

Vk Uk hk

k = Rk + vkD'vk

k h hksk
Sk = Sk + UkDkVk and

1T ^ T VkVk
k k k k k
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(g) Find tk' such that

Xk 'Xk + 'kSk

is the estimate of the state that minimizes

the sum of squares of all measurement

residuals. Use a quadratic search procedure

to find D.

(h) If the sum of squares from this iteration is

within a specified tolerance of the sum of

squares from the previous iteration, then

the algorithm has converged. Therefore, go

to (j).

(i) The algorithm did not converge. Therefore,

set x0 to the initial state vector that

satisfied (g) and increase the measurement

set. Then go to (d).

(j) Conduct the Modified Gallant Test, described

in Reference 1 to determine the need to

switch to the EKF target tracking

algorithm. If the test is passed, then

switch. If not, then go to (d).

Initial parameters are required for the state

vector x0, state covariance matrix P0, and the state noise
covariance Q. Provided that "reasonable" values of these

parameters are specified, then this sequential algorithm will

converge in the same number of iterations as the batch and to

12
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approximately the same values. The next section outlines an

algorithm for obtaining values for x0 and P0. Values for Q

are still user determined.

2.2 Simultaneous Bearing and Frequency Initial

Conditions Algorithm

A problem encountered with any algorithm that

needs a priori information is how to get a "good" or
"reasonable" initial guess of that information. This is very

critical when the algorithm is applied to extremely nonlinear

problems because a poor choice of initial conditions can cause
the algorithm to converge on an erroneous solution. In

addition, a good guess may reduce the number of iterations

needed for the solutions to converge.

Target tracking algorithms process data collected

from various sensors to generate a tracking solution. It is

possible to generate a guess for the initial conditions of the

target from these data. Such techniques have been used in

satellite orbit determination (Reference 3). The method chosen

for use in this study requires inputs of both bearing and

frequency measurements from two different sensors. Beginning

with the tangent of the observed bearing measurement from

sensor i:

sin 3. Y-Yi
tan 3 = I -

Cos 3

the following linear equation relates the target's coordinates,

x and y, to those of the sonobuoys, xi and Yi.
A A *

x sin i - y cos $i = xi sin 8i - Yi cos si.

13
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If a bearing measurement from sensor j is obtained, then the

following set of linear equations can be solved for the

target's position vector:

x sin i - v cos 2i = x. sin 3i - Yi cos 3;
KSin : - Y COS -: = •.Si .O

-x s x sin - Yi cos

Note that accurate position vectors of the sonobuoys are

required to solve these equations. If additional bearing data

are available from other sonobuoys at this time, they can also

be used to generate a least squares estimate of the initial

target position vector. When least squares estimation

procedures are used, an initial covariance can be computed for

this position vector.

A similar procedure is available for determining

the initial velocity vector which uses simultaneous bearing and

frequency data. The Doppler equation for a non-stationary

target and sonobuoy i is

fi = f+ i r 1

,v = position and velocity vectors of the target,

r, vi = position and velocity vectors of the buoy i, and

f 0 -transmitted target frequency.

14
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By assuming a value for f and rearranging the equation, the

result is the following linear equation for v

i ~ (r-r i) fo (r0)v

c f i ' ' C -

Noting that

r-ri

where u is a unit vector with components cos and sin

the following simple equation results:

= x + sin

=C [i--(l+- -i

After receiving another set of simultaneous bearing and

frequency data from sonobuoy J, the following set of linear

equations can be solved for the target velocity vector

cos i sin 6i - C -os + XiCosai +YisinBi -

C

15
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It is desirable to have several simultaneous data points to

insure a good least squares estimate of the velocity and its

covariance.

The methods outlined in this section have been

implemented and they give adequate estimates of the initial

position and velocity of the target. When the solutions are

from least squares determinations, it is possible to obtain

estimates of the diagonal terms of the state covariance matrix

for these parameters. This usually provides a sufficient

covariance matrix to be used as a priori input to the target

tracking algorithms.

2.3 Constant Tangential and Normal Acceleration Model

Originally, the target motion model used in both

the Hybrid and Sequential was a constant Cartesian acceleration

model. This model was adequate for both the initialization and

tracking phases of both target tracking algorithms, but it was

felt that it insufficiently modeled target motions that

involved turning mareuvers. Initially, it was proposed to

investigate the possibility of adding second-order Taylor

series terms to the measurement model to compensate for the

trackers' weaknesses in modeling turning maneuvers. However,

after more closely examining this problem, it was determined

that these turning maneuvers could be better modeled by

changing the target's motion model rather than by adding higher

order measurement model terms. Consequently, in this study the

target's acceleration model was changed from the old Cartesian

coordinate model to a first order, Gauss-Markov process for

Normal and Tangential acceleration components. This model was

found to complicate the system dynamics, but it was also found

to have embedded in it, four commonly used motion models --

16
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constant velocity, constant acceleration, constant radius turn

and variable radius turn.

The differential equations that describe the

tangential and normal accelerations are

= a . - a N

aTZ + aN,

where

and aT  and aN  are the constant tangential and normal

accelerations. There are four analytical solutions to these

differential equations, depending on values of the constants

a and a. These four solutions are:T  N

(1) constant velocity aT 0, aN .0

Vt+ ( t 0 t (fm

(2) constant acceleration aT # 0, aN 0

r(2 t ) I(At + arT- i A ,(t)

\ 7(t + 0t) 1(1 + At)(t vIt

17
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(3) constant radius turn aT - 0, aN 0

(4) variable radius turn aT # 0, aN # 0

+ A) a T At z v q:) t) 2,- -;() V
a aN  2aN

a 4a + T 2 + a N 2I

aT a (2(NN  aVW t +
+ A 1 + 7it(t)l- aNy ) (t) (

a. aT

coal n(I + aT t

Note the complexity of the solutions, especially

the variable radius turn. In order to use these equations in a

"batch" tracking algorithm, it would be necessary to have

statistical tests for model selection and for data interval

selection. These are the same four motion models used in the

Maximum Likelihood Estimator (MLE) developed at Tracor

(Reference 4). From the test results documented in Reference

1, the MLE is not as fast as the Hybrid or Sequential because

it takes considerable computer time to select the proper motion

18
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model and data interval. To avoid these problems, the motion

model and data interval selection features have been dropped in

both the Hybrid and Sequential.

For the Sequential, data interval and motion

model selections could be dropped because an EKF is used to

generate target state estimates. This EKF modifies the

estimates for aT and aN and rectifies the target's state

vector estimates for each measurement processed. These

estimates are valid only for this update point and do not need
to be saved beyond the next update point. This process of not

saving past estimates relaxes some of the restrictions on this

tracker. The Hybrid, on the other hand, does use a "batch"

filter to initialize the tracker. When batch processors are

used to generate estimates, one is more troubled with the data

interval and motion model selection because all the

measurements and tracker estimates are mapped back to the

initial epoch of the trajectory. If the wrong motion model or

data interval are chosen, the tracker cannot successfully map

all the information back to this initial epoch. However, the
Hybrid only uses this "batch" filter to initialize the tracker

and then switches to an EKF as soon as adequate initial

conditions have been found. Typically, only 50 to 100 seconds

of target data are needed to successfully converge onto a set

of initial conditions. Within this time frame, one rarely

finds that a submarine will initiate some maneuver which would

require a motion model change. Furthermore, it is believed

that enough flexibility has been built into the Hybrid's motion

model to compensate partially for a single maneuver. Since the

"batch" filter is used only to initialize the tracker and since

no drastic change in the target's motion is expected over the

relatively short initialization phase, the motion model and

data interval selection features of the MLE have not been

incorporated into the Hybrid.

19
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Reviewing the four common motions embedded in the

normal-tangential acceleration model, one notes the complexity

of the analytical solutions, particularly for the variable

radius turn. Complicating these equations even more is the way

the acceleration directions are coupled to the velocity

components, leaving a system of coupled differential

equations. Furthermore, to analytically solve these

differential equations, one would have to use a model selection

feature (which we are seeking to avoid) to determine which

analytical solution to use. Faced with all these problems, it

was decided that the way to implement the new motion model was

to numerically solve the differential equations with a

classical, fourth order Runga-Kutta algorithm described in

Reference 5. This allows the differential equations to be

integrated without performing motion model tests and without

decoupling the equations of integration.

2.4 Sensor Motion Model

Previously, the sonobuoys were assumed to be

stationary. Realistically, they drift due to ocean currents

and surface winds. Under these circumstances, it is possible

for each sonobuoy to drift in different directions.

Furthermore, mobile platforms are often used to gather acoustic

data. It is important to model the sensor motion as accurately

as possible in order to successfully model the measurement

process. To maintain generality, it was assumed that

associated with every data point is an estimate of the position

and velocity vectors of the sonobuoy. If the position vector

was required at an intermediate time, the following constant

velocity model is used:

i(t l )- ri(t) + Vi (t )yt

20
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This is an adequate model when small At's are used. An

advantage to using this model, which has been incorporated in

the trackers, is that both algorithms can now process data from

mobile sensors, such as towed arrays and hull-mounted systems

as well as data from drifting sonobuoys. Furthermore, Doppler

shifts can be better estimated by the tracking algorithms'

measurement model because sensor motion is accounted for in the

estimates.

2.5 New Data Models

Besides modifying the Hybrid's and Sequential's

target and sensor motion models, four new measurement types

were added to the measurement models. These new measurement

types include one active measurement and three passive,

two-sensor data types. The additions of these measurement

types enable the Hybrid to process most of the data types

available from acoustic signal processors.

The active range measurement for sensor i is

defined as:

1
= T C At

where

Pi  . T - Ti

c speed of sound in water

At - time interval between transmitting and

receiving the reflected signal.

21
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Time difference of arrival of a signal between two sensors has
also been added to the measurement model. This measurement is
modeled as:

Tij C c

Another two-sensor measurement that can now be used is the
Doppler ratio. This data type is modeled as:

__( ___)/ (j-j) • v
+ 

c (

+ .c-r / C +v.

Finally, the last intersensor data measurement that was
modeled, the Doppler difference, is defined as:

fi-fj fo _f/ (f-9j 2
I + (r-rj) "vi

r-r. c

2.6 Test Evaluation Criteria

The primary parameter used to qualitatively
analyze the performance of the tracking algorithms is the

22
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position error. In order to avoid confusion in terminology,

position error is also called distance error. Previously, when

the position error was used for analysis of tracking results,

three measures of performance were computed. The first measure

was the average position error over the entire track. The next

measure was the convergence time, defined as the time required

for the tracker to converge to a steady state error value

smaller than some specified value. The last performance

parameter was the predicted position error incurred by

projecting the tracker estimates forward for 300 seconds after

the last measurement was received. When the average and

predicted distance errors were below 500 meters and when the

position error converged to a steady state value below 500

meters, then the tracking algorithm performance was deemed

good. The same basic parameters were used to measure tracking

performance for this study, but two of the definitions have

been changed.

In this study, the average position error is

measured only after convergence has been achieved. Before,

convergence was attained when the position error reached a

steady state value below 500 meters. Now convergence results

when the position error reaches any steady state. Rather than

compute values for convergence time and distance errors

directly, they are now obtained from the plots of the position

error versus time. The predicted distance error is still

directly computed.

In addition to the plot of the position error,

plots of the tangential and normal components of the position

error were developed as an analysis aid. The tangential, or

along track, direction is defined to be along the velocity
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vector and the normal, or across track, direction is

perpendicular to it. Given the definition

F= E - F

where r and r are the true and estimated position vectors,

respectively, the tangential or along track error is:

Sr T = Sr

where Sr - .

The normal or across track error is

Sr (N._6r

where w is the vector normal to the velocity vector. By

looking at these plots, one is able to make qualitative

conclusions about the geometrical effects of target tracking.

Another qualitative analysis aid is the plot of

the true and estimated trajectories. Included on these plots

are the sonobuoy positions and the 300 second prediction

point. Combined, these four plots give an analyst the tools

needed to evaluate tracking algorithms.
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2.7 Test Scenarios

The test sets used in testing the Hybrid and

Sequential algorithms were the revised OCCD case 1 and case 8

described in Appendix A, Table A.IV. These two scenarios are

referred to as scenarios 1 and 2, respectively, in this

subsection. In both, the target moved through the tri-tac

pattern of stationary sonobuoys at a constant speed of 5 meters

per second on a straight line course. For Scenario I, the buoy

separation distance was 8000 meters, the signal-to-noise ratio

at one yard from the target was 82 dB and the signal

integration time was 20 seconds; while in Scenario 2, these

quantities were 5000 meters, 70 dB and 5.0 seconds,

respectively. The scenarios were not comprehensive because

they did not contain maneuvering targets or new data types.

The data used were bearing and frequency measurements from a

simulated DIFAR processor. Despite the shortcomings of these

scenarios, they were adequate for providing a preliminary

appraisal of the target tracking capabilities of the modified

Hybrid and Sequential algorithms.

2.8 Test Results

Tests were conducted on the Hybrid and Sequential

to compare the new algorithms' performances to the old

versions. In the tests, no initial conditions were given to

the algorithms except for an a priori state covariance matrix

that was required by the old Sequential. All other algorithmic

inputs were the same.

Tables 2.1 and 2.11 contain the quantitative

results for all of the trackers' solutions for scenarios l and

2. These tables contain the three tracking performance factors
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TABLE 2.1

SCENARIO I TRACKING RESULTS

ALGORITHM CONVERGENCE AVERAGE PREDICTED
TIME POSITION POSITION
(secs) EROR ERROR

(meters) 1 (meters)

New Hybrid 110 25 100

Old Hybrid 130 30 102

New Sequential 110 25 101

Old Sequential 130 30 104

TABLE 2.11

SCENARIO 2 TRACKING RESULTS

ALGORITHM CONVERGENCE AVERAGE PREDICTED
TIME POSITION POSITION
(secs) ERROR ERROR

(meters) (meters)

New Hybrid 100 60 64,

Old Hybrid 100 100 677

New Sequential 130 60 647

Old Sequential N/A N/A N/A
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for the four tracking algorithms studied, the old and new

versions of both the Hybrid and the Sequential. Figures 2.1

through 2.14 display the performance of the tracking filters

for both scenarios. The plots display the true trajectory with

a solid line and the estimated trajectory with a dashed line.

The x and y axes are the x and y components of the trajectories

in meters. The position error curves display the RMS distance

error between the estimated and true trajectories as functions

of time. These tables and figures are used below to evaluate

the performance of each of the algorithms.

Results from Table 2.1 for Scenario 1 indicate

that all four algorithms' performances were comparable. None

of the performance measures showed any significant difference

to indicate a particular algorithm's superiority, but the new

algorithms did converge sooner than the older ones. The

trajectory plots of Figures 2.1 through 2.4 show that each

algorithm could estimate a rather smooth trajectory and that

the predicted position was not far from the true position.

Overall, the distance error curves in Figures 2.5 through 2.8

indicate that all of the tracking algorithms' estimated tracks

were fairly close to the true ones. Since the distance error

plots for all the algorithms were small for this scenario, the

along-track and across-track distance error curves have not

been included. This scenario was very favorable in terms of

signal-to-noise ratio and tracking geometry, so good tracking

performance was expected and found for all of these algorithms.

The less favorable Scenario 2 produced poorer

results. The old Sequential algorithm was unable to initialize

in this case and therefore was unable to track the target.

Since the new Sequential algorithm did track this same target,

the modifications such as the inclusion of the initial guess
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algorithm and the new SKF initializer proved to be beneficial

in making the new version superior to the older one. From
Table 2.11 it is seen that the quantitative tracking results

were nearly the same for the other three trackers. The overall

results were good, but the large prediction errors above 500
meters were unacceptable. Looking at Figures 2.9 through 2.11,

the algorithms show significant divergence between the

predicted track and the true one over the last portion of these
plots. The old Hybrid algorithm had more trouble than the

others early in the track, but the difficulty disappeared as
the scenario progressed. The two new algorithms had less

difficulty because of their ability to generate good initial

estimates from the data, even with poor sonobuoy coverage. The

tracking relied principally on two sonobuoys early in the track

with most of the data coming from No. 1 and some from No. 3.
Very little or no data came from No. 2 during the first 400

seconds. The position error plots of Figure 2.12 through 2.14

show that after convergence, there was a jump in the steady
state position error, particularly in the newer algorithms.

This increase was a result of the data beginning to enter the

algorithms from sonobuoy No. 2, while sonobuoy No. 3 was
beginning to loose contact with the target. Further

investigation indicated that a pronounced jump in the

along-track position error occurred when sonobuoy No. 2 began

detecting the target. Since sonobuoy No. 2 is nearly along the

track, the change in steady state value can be attributed to

poor data accumulated by it.

2.9 Conclusions and Recommendations

The modifications made to the Hybrid and
Sequential tracking algorithms were designed to improve their

performances and expand their range of applications. Tests

conducted on the algorithms did not examine the effectiveness
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of the new data types because no adequate data generation was

available. The performance of the algorithms with active

range, time-difference of arrival, Doppler ratio and Doppler

difference data must be evaluated at a later date. Since all

simulated data came from stationary buoys, the sonobuoy motion

model remains to be evaluated.

Modifications that were tested include the

initial guess algorithm, the new Sequential initializer and the

new acceleration model. The quantitative results showed that

all the algorithms were comparable in tracking performance.

However, qualitatively, the results indicated that the new

versions of the Hybrid and Sequential algorithms are slightly

superior to their former versions. In the case of the

Sequential, the overall analysis shows that the new version is

superior to the original because it was able to track the

targets from both scenarios.

To fully evaluate the Hybrid and Sequential,

comprehensive tests should be devised to exercise every

modification made. These tests should have scenarios that use

both maneuvering and non-maneuvering targets, and also include

various combinations of data types such as bearing, frequency

and range or bearing and time difference of arrival. Any new

test should implement non-stationary sensors, such as drifting

sonobuoys or towed arrays.
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3.0 SIMULATION OF SINGLE TARGET DATA

Many types of acoustic processors are available

for generating measurement estimates such as frequency and

bearing for target tracking. Passive systems include OMNI

sonobuoys which are used to make narrowband frequency estimates

and DIFAR sonobuoys which are used to estimate both narrowband

frequency and bearing measurements. Another class of passive

detection systems include hull mounted sensors and towed

arrays. These systems are used by both surface ships and

submarines. Hull mounted and towed array systems are capable

of making long range, narrowband frequency and bearing esti-

mates as well as broadband bearing estimates. Besides the

passive systems mentioned, active systems are used that

transmit high energy pulses and listen for return signals to

make measurement estimates. Active systems use return times to

generate range estimates for a target. Some of these systems

also generate Doppler frequency and bearing estimates based on

the return signal. However, the algorithms considered in this

study primarily require only passive narrowband acoustic

measurments for inputs. Furthermore, it was felt a priori that

narrowband frequency and bearing estimates for a given target

would be sufficient for use in sorting data for the multiple

target problem. Therefore, this study concentrates only on

data processors that generate passive, narrowband frequency and

bearing estimates for the single target and multiple target

tracking problems.

3.1 Passive Narrowband Frequency and Bearing

Simulator

A computer program was developed which generates

simulated narrowband frequency and bearing estimates

(Reference I). The simulated data from this model yield
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non-Gaussian measurement errors that are fairly reasonable when

compared to samples of true sea data.

The data generation program models a square law

detector which uses a MAX-OR processor to compute frequency

estimates and an arctangent processor to compute bearing

estimates. A schematic of the simulator model is given in

Figure 3.1. This figure shows a sensor that receives signal

plus ambient noise and that is followed by a comb filter bank.

This comb filter bank consists of a fixed number of frequency

bins that are Af Hz wide. The value Af is chosen by the user

so that the frequency estimate's resolution is controllable.

Following the comb filter bank, a square law detector is used

to detect the level of omnidirectional power present in each

frequency bin. The noise spectrum is assumed normalized. The

integration time for the square law detector is inversely

proportional to the bin width, Af, set for the comb filter

bank. From this inverse relationship, one can see that when

long integration times are used, fine frequency bin widths will

result for the comb filter bank. A post detection integrator

follows the square law detector in the data simulation

program. This post detection integrator allows the processor

to average the output of the square law detector over a fixed

number of samples to reduce the variance of the estimates.

This averaging process increases the probability that the

MAX-OR processor will pick the signal peak of the spectrum and

reject random noise peaks. The post detection integrator was

not used in this study because only single sample outputs from

the square law detector were used to generate measurement

estimates. After the optional post detection integrator, a

MAX-OR processor is used to analyze the power levels in each

bin of the comb filter bank. From the single bin chosen by the

MAX-OR processor, frequency and bearing estimates are
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produced. To determine the frequency estimate, the bin number

of the chosen frequency bin is converted into a frequency value

which corresponds to the center of that bin. The simulated

X-channel and Y-channel outputs from the two dipole sensors for

the chosen frequency bin are then analyzed by an arctangent

processor to produce the bearing estimate. If the omni-

directional power level for the chosen frequency bin exceeds a

specific fixed value, the measurements are accepted; otherwise

they are rejected. This threshold level is usually set to

limit severely the number of false alarms than can be accepted.

Another major portion of the data generation

process is concerned with scenario kinematics and time

variables. It is necessary to compute a variety of time

varying parameters for a simulated scenario before the

processor model described above can be used to generate a

sequence of frequency and bearing estimates for each sensor

involved in the simulation. Positions and velocities of all

the participants are passed to the data generation program so

that bearings, ranges, SNR's, and Doppler shifts can be

computed at each time increment for each sensor in a specified

scenario. A program which accepts sensor positions, target

initial conditions, and subsequent target motions as inputs has

been developed to provide the required functions for the

processor model. The following subsection details some of the

considerations involved in computing the processor's computed

SNR in this model. Details of the kinematic and geometry

portions of the scenario generation model will not be discussed

here.

3.2 SNR Calculations for the Output Measurements

Signal-to-noise ratio (SNR) calculations figure

prominently in the computing and the weighting of the frequency
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and bearing estimates. The accuracy of the calculations for

both frequency and bearing estimates are affected by the SNR of

the detected signal. Furthermore, the threshold test, which

determines whether or not an estimate is accepted, is based on

the SNR of the power in the omnidirectional channel for the

chosen frequency bin. Because of the importance of the SNR

computed for the detected signal in the data simulation

program, great care is taken to model most of the factors which

affect the SNR detected by the MAX-OR processor.

Representative values for the target's radiated

signal strength and for the ambient noise level are chosen.

The strength of the target's signal is chosen to conform with

values for various classes of targets. The ambient noise level

is chosen to model the effects of surface, marine life, and

distant surface ship noise. Given the target's signal strength

and the ambient noise level, the SNR in dB at one yard from the

target in a I Hz band is the difference between these two

levels.

Two different factors are then considered in

modeling the degradation of the signal's SNR found when the

signal is transmitted through the water to the sensor

(Reference 6). One loss is called the attenuation loss. This

loss is a function of the radiated frequency and the range or

distance from the target to the sensor. Attenuation loss is

much greater for high frequencies and is almost negligible for

the low frequencies used in this study. A more important loss

encountered with acoustic signals is the spreading loss. For

the ranges associated with deployed, narrowband systems, the

spreading loss is approximated by a simple 20 log R loss in dB,

where R is the magnitude of the distance in yards from the

target to the sensor. This one-way propagation model assumes
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spherical spreading in an isovelocity medium. While this is

not strictly true in the open ocean, it does account for the

main signal loss for close range sonobuoy operations.

Variations in sound velocity will cause the actual losses to be

more or less than the modeled values; however, the general

study results from using the 20 log R loss should be indicative

of typical ocean results. If the results for particular

environmental conditions are required, tabulated propagation

losses may be substituted for the simple model. These two

losses, attenuation and spreading, are modeled in the data

simulation program to compute a reasonable SNR value for the

signal detected by a sonobuoy's receiver.

Besides the propagation losses, other factors are

modeled and affect the SNR value computed for the detected

signal. Both the ambient noise level and the signal strength

level are scaled at each time step by random noise terms to

model random fluctuations in these two values. These random

contributions affect the computed SNR for the omnidirectional

channel for each bin and create more realistic fluctuations for
each bin.

The other factor considered in computing the SNR

is the possible smearing of one narrowband tone over several

bins during a given integration period. Due to the changing

dynamics and geometries of a target moving relative to a

particular sonobuoy, the Doppler shifted frequency of the

received signal varies with time. Particularly during CPA,

i.e., when the Doppler shift changes from compression to

expansion, the narrowband tone will slide through several

frequency bins both above and below the unshifted frequency

value. It is quite possible that the detected signal can slide

through two or more frequency bins within one integration time
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when the Doppler shifted frequency value changes in time. When

this happens, the detected omnidirectional power for one signal

is effectively split over two or more frequency bins. Because

the MAX-OR processor picks only the single bin with the most

power and ignores all adjacent bins, the omnidirectional power

in the chosen bin will really contain only a fraction of the

signal's total power during that integration interval. This

causes a noticeable drop in the SNR for the detected signal for

this integration interval. This can lead to an apparent fading

or even a loss of the signal. This smearing of the signal over

several bins is modeled in the data generation program. The

program samples the signal many times over one given

integration period, and places simulated omnidirectional powers

in the appropriate frequency bin for each sample. At the end

of the integration period, a percentage is computed for the

amount of time the signal spends in each frequency bin. The

percentage for each bin then multiplies the power in that bin

to produce a simulated power distribution for that integration

period.

Propagation losses, random fluctuations in the

mean target signal level and the mean ambient noise level, and

the possible smearing of the signal across several frequency

bins are considered in the data simulation model. These

effects are considered to be the major factors which affect the

SNR value detected by the MAX-OR processor. Using these models

for the SNR calculations, data is produced that contains

periods of signal fading and signal loss. Furthermore, the

data is non-Gaussian and effectively tests the data sorting

capabilities and target tracking capabilities of candidate

algorithms.
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3.3 Simulated Measurement Error Curves

After developing this data generation simulator,

error standard deviation curves for both the bearing and

frequency estimates were needed to weight these measurements

for tracking purposes. A sample of over 22,000 data points was

used to compute the means and standard deviations of the

measurement errors for many different SNR values. Generally,

over 1,000 samples were generated for each SNR range to assure

statistical accuracy in the calculations of the means and

standard deviations of the measurement errors. To produce the

sample, one fixed sonobuoy and a single, non-moving target were

used to generate simulated data. The range between the sensor

and the target remained fixed at 5,000 meters for all of the

data gathered. To obtain measurements over the full range of

SNR values, the input ambient noise level and target strength

level were varied from run to run. A frequency cell size of

0.1 Hz was used to analyze the frequency spectra. After the

simulation runs were made, the data were merged into one large

data set. The data were then sorted into ranges of SNR values,

and the error statistics were determined for each of these

ranges. In this fashion, the mean and the standard deviation

of the errors for the simulated frequency and bearing measure-

ments could be determined as functions of the SNR computed for

the detected signal.

The mean of the errors for both the frequency and

bearing estimates were near zero for all values of SNR. The

standard deviations of the measurement errors for both the

frequency and bearing estimates were found to be quite large

for low SNR's and to approach zero very quickly for medium to

high SNR's. These statistics confirm that poor measurement

estimates are made for weakly detected signals but more

52



Trar Applied Sciences

accurate measurements are estimated for more strongly detected

signals. The curves for the standard deviations of the

frequency and bearing errors as functions of the SNR are shown

in Figures 3.2 and 3.3, respectively. With these curves,

realistic threshold levels for this simulator can be chosen.

Furthermore, accurate weights for the simulated frequency and

bearing measurements can be computed as a function of the SNR

computed for the detected signal.
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4.0 SIMULATION OF MULTIPLE TARGET DATA

Detailed descriptions of the two multiple target

scenarios are presented below. This section describes these

scenarios used in the investigation of this problem as well as

the two techniques used to generate the simulated multiple

target data. With these data, the preliminary investigation

into a proposed data sorting approach was made possible.

4.1 Multiple Target Scenarios

Two scenarios were chosen to be used for the

initial multiple target study. The single target scenario

generation program, described in Section 3.0, was used to

simulate the motion for each separate target used in the

scenarios. This scenario generation program contained models

that allowed an analyst to simulate constant velocity

trajectories or to simulate maneuvering trajectories that

utilize either velocity changes or course heading changes.

Initially, however, only constant velocity, constant heading

trajectories have been used to reduce the number of variables

in the study.

4.1.1 Scenario One - The first scenario consisted of

three different targets which were observed by a tri-tac sono-

buoy pattern. This scenario is shown in Figure 4.1 and

described by the information in Table 4.1. Each target started

at a different location with a different speed and course

heading. All targets maintained their original course and

speed. The total simulated scenario lasted for 200 seconds for

all three targets. Measurements were updated at 10 second

intervals. This scenario was chosen to determine how well our

5
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Figure 4.1 Scenario 1, 3 Targets
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TABLE 4.1

DESCRIPTION OF SCENARIO 1

Buoy Information

Sensor X (in) Y (Mn) V (in/sec)

1-3,500 0 0

II0 7,062 0

II 3,500 0 0

Target Information

Target X0 (Mn) Yo (mn) V (i/sec) e (0) Xf (Mn) Yf (M)

1 -3,000 0 6 45 -2,151 849

2 2,500 0 9 90 2,500 1,800

3 0 4,000 4 300 400 3,307

All Targets: f0 = 150 Hz
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data sorting approach could separate data from targets with

very different dynamics and geometries but that remained within

the observation range of the tri-tac sonobuoy pattern.

4.1.2 Scenario Two - A second, more difficult scenario

was designed to test the limitations of the data sorting

program. This scenario is shown in Figure 4.2 and is described

in detail in Table 4.11. Two targets traveled at precisely

equal velocities along parallel paths that were separated by

1500 m. These two trajectories ran for 400 seconds. The

course headings for both targets perpendicularly intersected an

imaginary line which joined sensors 1 and 3 of the tri-tac

pattern. This scenario was chosen to generate data that would

create problems for sensors I and 3. Since the two targets

traveled parallel trajectories, very little difference in

bearing estimates for the two targets could be detected by

sensors I and 3. Furthermore, if both targets transmitted

narrowband tones at the same or very nearly the same center

frequency, little or no difference would be detected in the

Doppler shifted frequencies received by sensors 1 and 3. By

studying this scenario, it could be determined how similar two

different signals could be before the data sorting program

fails to separate the two target data into correct individual

data sets for each target.

4.2 Multiple Linetracker Data

The first multiple target data simulation scheme

employed the previously described DIFAR data generation program

to create linetracker data for each of the targets in the

scenarios. The results were then merged into a set of multiple

target data for each sonobuoy. The data for each target were

created as though an individual linetracker was dedicated to
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Figure 4.2 Scenario 2, 2 Targets
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TABLE 4.11

DESCRIPTION OF SCENARIO 2

Buoy Information

Sensor X (Mn) Y (Mn) V (in/sec)

I -3,500 1,000 0

1I 0 7,062 0

111 3,500 1,000 0

Target Information

Target X0 (in) Yo (in) V (ni/sec) a (0) Xf (Mn) Yf (in)

1 750 0 8 90 750 3,200

2 -750 0 8 90 750 3,200

f 0I= 150 Hz

(f OT o T2I-0.0, 0.1, 0.2, 0.3, 0.4, and 0.5 Hz
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that target with no outside interference from any other

source. This assumption is not always valid, but it was used

in these simulations. Separate sets of linetracker frequency

and bearing measurements were created for each target in the

scenario. Then the data merging program merged the data by the

time tag and observing buoy number to create a single set of

multiple target data for each sensor. This last step destroys

line identification information that would be provided if

individual line trackers were actually used to track the

separate target lines. In a sense, this step makes the data

more realistic. This merged data could actually be produced if

the MAX-OR processor in the DIFAR simulator was replaced with a

processor that thresholds and then picks the n (n = 2, 3, 4,

etc.) largest peaks instead of only the single largest peak at

each output time. In any event, the data described in this

subsection will be referred to as multiple linetracker data in

the remainder of this report. Table 4.111 contains a sample

set of the merged linetracker data for all three targets as

simulated for sensor I of scenario 1. Multiple linetracker

data for all three sensors in both scenarios were generated in

this fashion.

4.3 Simulated Multiple Target Frequency Spectra

As noted above, practical questions were

encountered with simulating the multiple linetracker data as

described above. It was assumed that no interference from the

other signals was encountered by a linetracker that was set to

observe a specific frequency line. Sometimes narrowband tones

are so closely clumped together that the fixed width of the

linetracker's observation window makes it impossible to isolate

one line from all of the others. Particularly when the MAX-OR

processor is used to pick frequency estimates from a
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Table 4.111

SIMULATED MULTIPLE LINETRACKER DATA FOR SENSOR I FROM SCENARIO 1

SAMPLE TIME TARGET FREQ. BEARING SAMPLE TIME TARGET FREQ. BEARING
NUMBER sec NUMBER Hz. (o) NUMBER sec NUMBER Hz. (0)

1 5 1 149.65 360 24 115 2 149.85 14

2 3 150.15 52 25 1 149.45 26

3 15 2 149.95 356 26 3 150.05 34

4 1 149.55 0 27 125 2 149.85 15

5 25 2 149.95 359 28 1 149.45 26

6 1 149.55 10 29 3 150.051 51
7 3 150.15 43 30 135 2 149.85 9

8 35 1 149.55 12 31 1 149.45 28

9 45 2 149.95 14 32 3 150.051 39
10 1 149.55 16 33 145 2 149.85 0

11 55 2 149.95 6 34 1 149.45 30
12 1 149.55 18 35 3 150.05 41

13 3 150.15 45 36 155 2 149.85 14

14 65 2 149.95 3 37 1 149.45 30

15 1 149.55 19 38 3 150.05 62
16 75 2 149.95 4 39 165 2 149.85 24

17 1 149.45 23 40 1 149.45 31
18 85 2 149.85 5 41 3 150.05 40

19 1 149.45 24 42 175 2 149.751 22

20 95 1 149.45 24 43 1 149.45 i 30

21 3 150.05 48 44 3 150.051 42

22 105 2 149.85 4 45 185 1 149.451 35

23 1 149.45 28 46 3 150.05' 33
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linetracker's observation window, the presence of other signals

close to the desired signal may cause the frequency estimates

to skip in time from one signal to another. Such software

restrictions on the frequency estimator could prevent the DIFAR

sonobuoys from generating the type of theoretical, multiple

target data sets presented in Table 4.111.

Due to these problems, it was decided to look at

the power spectra with all of the signals present and no

"OR-ing" to see if signals could be sorted from the noise in

these spectra. The following technique has been used to

simulate power spectra with multiple narrowband tones present.

To generate the simulated power spectra, the data

generation program was first modified to furnish the simulated

omnidirectional power spectra and the associated X and Y
channel information instead of the simulated MAX-OR linetracker

estimates. This allowed the spectra for one target's

trajectory to be saved so it could later be merged with another

target' s set of spectra. Besides changing the output from the

data generation program, the option was added to zero out all

bins in the comb filter bank that contain only ambient noise

powers before the individual target power spectra were output.
With these two options, one set of simulated power spectra with

both noise and signal present could be generated for one

target. Next, power spectra that were zero filled except for

the bins with true signal present could be generated for the

remaining targets. These data sets could then be combined to

produce simulated spectra that contained the narrowband tones

of multiple targets and ambient noise.

The multiple target power spectra were generated

in the following fashion which is illustrated in block form in
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Figure 4.3. For one target in each of the two scenarios, a

simulated se. of power spectra was generated. The spectra for

the frequency band simulated contained the signature of the
target's narrowband tone as well as random, ambient noise.

This was done for all three sensors' channels. Next, power

spectra were generated for each of the remaining targets in

each scenario that contained only the target' s individual

signature with all of the remaining frequency bins zero

filled. Then, these spectra were merged to create the multiple

narrowband signals and random ambient noise. For each

frequency bin in the simulated frequency band, the simulated
data in the omnidirectional channel, the X-channel and the
Y-channel were merged for all of the targets involved in that

scenario. After thresholding the omni spectra, frequency and

bearing estimates are provided every 10 seconds for each bin

that exceeds the threshold. These data are generated for each

sensor for the duration of each scenario.
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5.0 CLUSTER ANALYSIS FOR MULTIPLE TARGET DATA SORTING

Cluster analysis is a field in numerical taxonomy

which seeks to collect objects into natural groupings by

objectively discriminating between arbitrary sets of attributes

which describe these objects. Most of the developments in this

field have been pioneered by researchers in the social,

biological, and anthropological sciences. Three excellent

sources of information about clustering techniques can be found

in References 7, 8, and 9. Clustering techniques have proven

to be useful in these fields for collecting items into natural

groups that were often overlooked by researchers. It was

suggested by Tracc: chat cluster analysis be investigated as a

possible approach to the inherent problem of multi-target data

sorting for the larger problem of multi-target sonobuoy target

tracking. The concept suggested was that cluster analysis

might be useful in identifying and separating intermixed

measurements from multiple targets. Once input measurements

were separated by target, it would then be possible to overcome

multi-target initialization problems and it might also be

possible to solve the multi-target localization problem with

single target algorithms, each operating with measurements from

only one target. Research on the application of cluster

analysis to the data sorting problem for sonobuoy tracking is

the subject of this section.

A major task for this contract called for a

search to determine the optimum clustering procedure for

separating data from multiple targets into individual data

sets. For this study, one cluster program package consisting

of several clustering techniques developed by the Department of

Forestry and Outdoor Recreation at Utah State University was

used (Reference 10). This program's techniques were designed
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to group objects into hierarchical clusters. A second program

was developed at Tracor from papers written by Ling (References

11 and 12) to cluster items into sets of natural groupings.

These two programs formed the computational basis for this

study.

The objective of the present effort was to

explore the basic feasibility of performing acoustic data

sorting with the techniques of cluster analysis. This required

a multi-step process. First, as outlined above, the

computational capabilities required for such research were

acquired and developed. Then, the acoustic data sorting

problem was analyzed to permit it to be approached by the

methodologies of cluster analysis. This involved the

definition of objects and attributes for the problem. Next, a

preliminary study was conducted to narrow the scope of data

normalization, cluster measures, and clustering algorithms that

would be subjected to detailed study. With the range of

variables suitably narrowed, the final part of the study was to

evaluate, in some specific scenarios, the kind of performance

that could be obtained from cluster analysis with respect to

the data sorting problem.

The results obtained from this program of work

are encouraging, but they are incomplete. Further research is

indicated as being warranted. Specifically, the results show

that cluster analysis can perform several acoustic data sorting

functions, and that these functions should lend themselves to

future automation. Positive results were obtained in

connection with data outlier detection and removal,

multi-target data sorting by target, and target data/noise

sorting. It is felt that the results of this study establish

that cluster analysis can be used successfully to perform all

of these functions in the context of sonobuoy target tracking.
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These results are provided by a methodology that simultaneously

inspects all of the measured attributes of each data point and

then groups data together, via fixed rules, which are most

alike in terms of all the measured attributes. It could be

stated that this computational formalism simply automates a

process that is intuitively pleasing for acoustic data sorting;

namely, group data that are similar in their physical measures

such as frequency and bearing. Cluster analysis goes beyond

intuition, however, in that it can handle an n-dimensional

attribute vector as easily as it can a single sorting variable.

A serious drawback to the automated use of

cluster anlaysis was indicated by the results of this study,

however, and it appears to stem from the data normalization

problem. As will be discussed in the remainder of this

section, there is a cluster threshold that must be defined in

order to obtain successful cluster separation of valid data and

outliers, of multiple target data sets, or of valid target data

and noise. How to set this threshold was not determined by the

present work. This problem was clearly identified by the

present research, but it remains unsolved. Any practical

application of cluster analysis to acoustic data sorting must

address this problem, but it was beyond the scope of this

study, which has dealt with the more basic aspects of concept

feasibility. In relation to Section 2 of this report, it

should be noted that the data sorting studied here falls into

the batch processing category. The concept should be

expandable to sequential processing, however, by the future

development of known techniques.

The remainder of this section is rather lengthy.

Subsections 5.1, 5.2, 5.3 and 5.4 introduce information about

various aspects of cluster analysis. Subsection 5.5 describes

the preliminary work done to reduce the scope of the detailed
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scenario evaluations. Subsection 5.6 discusses the application

of cluster analysis to the single target data outlier removal
problem. Input data for the algorithms are introduced here, as

are the clustering tree diagrams. It is these diagrams that
constitute the clustering algorithm's output at present. Which

data samples are clustered, and at what confidence level they

are grouped are indicated by these diagrams. Subsections 5.7

and 5.8 present very detailed scenario evaluation results.

Subsection 5.7 addresses the application of clustering to

multi-target data sorting with input data supplied by multiple

linetrackers. Subsection 5.8 addresses the application of

clustering to separating valid multi-target data from noise in

frequency spectra data. In these two discussions, Subsections
5.7.1, 5.7.2, 5.8.1 and 5.8.2 contain considerable detail, and

can be skipped over on first reading. Finally, Subsection 5.9

contains all the major conclusions reached about the

feasibility of using cluster analysis for multi-target acoustic
data sorting based on the results of this study.

5.1 Definition of Objects and Attributes for

the Clustering Study

Cluster analysis requires that a group of objects

be collected so that it may be determined which of these

objects exhibits the most similarity between them. Associated
with these objects is a set of attributes that is used to

describe certain characteristics about the objects. The

objects are to be clustered into natural groups based upon the
descriptions provided by these attributes. For the current

investigation, the objects consisted of a set of prospective

acoustic signals that was to be separated from any ambient

noise, and the remaining true data were to be clustered into
data sets that should coincide with individual targets

represented in the data. Initially, the attributes for each
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prospective signal were chosen to consist of a data triplet

represented by the time tag, bearing estimate and either the

frequency estimate or its associated bin number in the comb

filter bank. After a 3600 to 00 discontinuity in bearing

convention was encountered, it was decided to substitute the

sine and cosine of the bearing estimate for the bearing

estimate. This resulted in a set of attributes for each

prospective signal that consisted of the time tag, sine of the

bearing estimate, cosine of the bearing estimate and the

frequency estimate. The possibility of using the SNR value at

the receiver was considered as a fifth attribute, but the SNR

values were found to fluctuate so wildly that they did not

prove to be useful for data sorting.

5.2 Standardization of the Attributes

Before analyzing the results of the preliminary

study, several other concepts regarding the clustering programs

should be discussed. One point concerns standardizing the data

in some fashion to produce better results in grouping the

data. For the scenarios used, data were output at 10 second

intervals. The frequency measurements for a given target

varied by less than one Hz over the entire track and the

bearing measurements varied by, at most, one radian over any

track. The numerical difference in raw time units between

successive measurements for an individual target is much larger

than the numerical change in bearing units and frequency

units. Because of this large difference, the clustering

programs tended to group measurements by time tags rather than

by individual targets when non-standardized data were used.

CLUSTAR, the clustering package from Utah State University,

contains five alternatives for standardizing data. The

standardization techniques may be employed with individual

attributes or may be used on all of the attributes at once.
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The attributes may be standardized in the following manners (i

refers to the individual attribute number, j to the data
quadruplet index number):

I) Xij -Xi

(2) Xij l ia

(3) (Xij - xi)/u i

(4) Xii /max (Xij)

(5) (Xij - min(Xij))/(max(Xij) - min(Xij))
3 j 3

All of these methods were used in this study to determine the

best standardization technique for our problem.

5.3 Resemblance Matrix

After data have been accumulated and either

standardized or left alone, some measure of similarity or

dissimilarity between the objects must be generated. In

general, these measures are computed by either a similarity

coefficient or a dissimilarity coefficient. When similarity
coefficients are used, a large value for the coefficient for a

pair of objects implies a high degree of similarity between the

pair. Conversely, if dissimilarity coefficients are used, a

large coefficient for a given pair implies a large degree of
dissimilarity between the individuals. One of these

similarity/dissimilarity coefficients is used to transform the
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data matrix or the standardized data matrix into a resemblance

matrix. CLUSTAR has seven different similarity/dissimilarity

coefficients that may be used. These methods are named and

described below. (NOTE: Subscripts j and k refer to object

numbers, subscript i refers to a specific attribute.)

Method I

correlation coefficient rjk

n
. (Xij - Xj)(Xik - Xk)
i-I

r (xij - ) (Xik " Xk)2)

Method 2

average Euclidean distance djk

dik ( - Xik)2/fn)-

Method 3

vector dot product coefficient cos 8
n
:. XijXik

Cos Jk i=1

(~x~~) (~xk)12
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Method 4

coefficient of shape difference Zjk

Let djk be the average of Euclidean distance

Let Qjk = , ( 
Xik)

Sn (d - Q~k)

Method 5

Clifford-Stephenson coefficient Sik

n
Xij - Xik I

Sjk - n

1 (Xij + Xik)
i--i

Method 6

Canberra metric coefficient cjk

1 I Xii -XikI
jk -= n il (Xij +Xik)

'ethod 7

Bray-Curtis coefficient bjk

n
2min (X x2 n(ii, Xik)

i--1
bjk n (X ij + Xik)

Each of these seven measures have been tested to determine the

optimal similarity/dissimilarity coefficient for our problems.
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5.4 Clustering Algorithms

After a resemblance matrix has been computed for

a given data set, some clustering technique must be used to

determine how the data should be grouped. Several clustering

techniques can be used, but one desires to use the technique

which best clusters the data into groups that are appropriate

for a given problem. For the simulated multi-target data used

here, the correct grouping of data is known a priori; so, one

knows what patterns he should be looking for from the

clustering program's output. Knowing this information, tests

can be run to determine the best clustering technique for

separating data into individual target data for the multiple

target tracking problem.

Five clustering techniques are currently

available for separating the data. The four methods available

with the CLUSTAR package include the single linkage method, the

complete linkage method, the unweighted pair-group method using

arithmetic averages (UPGMA), and Ward's method. Ling's papers

describe a (k,r) clustering method. Each of these methods have

individual characteristics which make them more desirable for

specific problems. The single linkage method has also been

called the nearest neighbor or the minimum method. A candidate

member for an existing cluster has similarity to that cluster

equal to its similarity to the nearest member within that

cluster. This technique often produces straggly, chain-like

clusters. Complete linkage, on the other hand, associates the

similarity for a candidate point to an existing cluster to be

equal to its similarity with the farthest member in the

cluster. The complete linkage method is also known as the

farthest neighbor method or the maximum method. Clusters

produced by this method tend to be tight, hyperspherical,
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discrete clusters. According to Sneath and Sokal

(Reference 7), UPGMA is probably the most frequently used

clustering strategy. UPGMA tries to group new points into an

existing cluster by using an unweighted average similarity or

dissimilarity within the cluster. Ward's method uses a

within-group sum of squares objective function to decide in

which cluster the point belongs. Ling describes his (k,r)

clustering technique as a generalized single linkage algorithm

which utilizes the k and r parameters to define the internal

properties of a cluster. His (l,r), (i.e., k = 1), clustering

algorithm, which corresponds to a classical, hierarchical,

non-overlapping single linkage algorithm was developed for this

study.. All of these clustering methods have been evaluated in

this investigation.

5.5 Optimal Clustering Techniques for the Multiple

Target Problem

Bearing and frequency measurements, when viewed

as functions of time for an individual target, appear as long

chains for individual targets. These chains are rather smooth

and continuous when plotted for non-maneuvering targets.

Since, initially, only non-maneuvering trajectories are being

used for this study, it seemed as though the single linkage

methods would work best for this problem. Initial studies have

tended to verify this preliminary judgement.

To determine the best combination of techniques

for processing the data with the cluster analysis programs,

simulated multiple linetracker data were generated which

contained measurements for all three of the targets involved in

scenario 1 (see Figure 4.1). The resulting multiple target

data were processed with each of the possible combinations of

processing options for data normalization, resemblance matrix
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generation, and cluster generation. Since simulated data were

used in this study, it was known a priori how the data should

be properly sorted. With this knowledge and with the

clustering results obtained from each of the processing

combinations, one could determine the optimal configuration.

Initially, one of the four clustering programs

from CLUSTAR was chosen to sort the data and non-standardized

data were used to generate the resemblance matrix

coefficients. Each of the seven similarity/dissimilarity

coefficients were used to generate an individual resemblance

matrix. Results from this data processing combination were

evaluated and then another clustering method was used to

re-evaluate the same resemblance matrix coefficients. The raw

data were used in such a fashion until all possible

combinations of resemblance matrix coefficients and clustering

methods had been tested. As mentioned in Subsection 5.2, it

was determined that the difference in units for the raw

attributes, especially when time units were compared to

frequency and bearing units, was much too drastic for any of

the resemblance matrix-clustering methods to succeed.

Therefore, it was decided to examine the possibilities of

normalizing the attributes to improve the clustering results.

Next, alternative data normalizations were chosen

to pre-process the data. For a given data normalization,

resemblance matrices were generated for each of the seven

similarity/dissimilarity coefficients and the results from

processing these resemblance matrices with a given clustering

algorithm were evaluated. After all the resemblance matrix

options had been tested, a different clustering method was used

to process each of the resemblance matrices. After these

results were examined, another clustering method was picked and

the process was repeated. This series of tests was continued
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until all of the clustering methods had been evaluated. Then a

new data normalization technique was used to standardize the

data and the testing procedure was begun anew. This testing

procedure continued until all possible combinations of data

normalization, resemblance matrix generation, and clustering

procedures had been evaluated.

The results from these exhaustive tests lead to

our choice for the best clustering combination currently

available for sorting multiple target data. CLUSTAR's single

linkage clustering method outperformed all other methods when

it used a resemblance matrix consisting of Euclidean distance

dissimilarity coefficienus for raw data that had been

normalized by method 5 to force all of the attribute values to

lie between 0 and 1. Several of the data normalization

techniques such as methods 3 and 4 showed promise, but none

performed as well as method 5. Similarly, some of the

resemblance matrix options such as the vector dot product and

coefficient of shape difference coefficients yielded reasonable

results, but none of their results were found to be as good as

results obtained with the Euclidean distance dissimilarity

coefficients. As was previously stated, the single linkage

clustering algorithm was expected to perform best of all the

clustering algorithms due to the straggly, chain-like nature of

the raw data. The complete linkage method tended to form

initial small clusters well, but these clusters were not

properly joined after these initial clusters were formed. None

of the other clustering schemes worked as well as the single

linkage algorithm.

After testing all of CLUSTAR's processing

capabilities, Ling's (l,r) algorithm was tested. Ling's

algorithm uses Euclidean distances for dissimilarity

coefficients. He states (Reference 12) that the class of (l,r)
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algorithms is identical to single linkage algorithms. In view

of these two facts, it was decided to normalize all of the raw

data to lie between 0 and 1 as above and compare the (l,r)

results to those from CLUSTAR's single linkage algorithm. The

clusters picked by the (l,r) algorithm were found to be

identical to those determined by the single linkage

algorithms. Because of the identical results in cluster

formations, it was decided that only one of these two

algorithms needed to be used in continuing our investigations.

CLUSTAR's single linkage algorithm was chosen and its specific

results are presented in the following sections.

5.6 Clustering to Remove Outliers from Single Target

Data

Outlier removal is a problem that is most

commonly associated with single target tracking problems.

Outliers are defined as points in a measurement set that do not

truly belong to the target being observed. Various factors can

lead to outliers occurring in a data set. For instance a

measuring device may actually detect a second target and

mistakenly associate the measurement for this target with the

measurements for the primary target. Other times, ambient

noise may dominate the actual signal such that a measurement is

generated for random noise rather than for an actual target

signal. Sometimes hardware or software problems can lead to

outliers being included in the data stream. Whatever causes

these outliers to arise in the data, the problem is to

recognize these points as outliers and then to eliminate them

from the measurement set. If one attempts to track a target

with data that contain several outliers, it becomes quite

likely that the tracker either will not converge onto a valid

solution or that it will eventually be thrown off track when it

attempts to incorporate the outliers into its estimates.
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Particularly for target tracking applications, it is very

important that outliers be recognized and removed from the data

so that accurate tracking solutions may be obtained for a

particular target.

In the past, several approaches have been tried

to alleviate the problems that arise when outliers occur in

target data sets. One approach has been to smooth the data by

prefiltering it before passing it on to a tracking algorithm.

Another commonly used approach is to initialize the tracker as

soon as possible with the initial data and then use the

measurement prediction feature from least squares tracking

algorithms to decide whether to accept or reject new data.

With least squares tracking algorithms, future measurements can

be predicted by the algorithm along with an associated variance

for this predicted measurement. One commonly used approach for

outlier removal is to reject any measurement that exceeds by

more than three or four sigma the predicted measurement from

the target tracking algorithm. Another possibility is to

merely ignore the outlier removal problem and process all of

the measurements as though all of them are valid observations.

If only a few outliers are contained in the data, tracking

estimates may not be too adversely affected by processing the

outliers along with the true data. However, when significant

numbers of outliers are processed by the target tracker, the

tracking solutions will tend to diverge from the true track of

the real target.

In this study, we have investigated the

possibility of using single linkage clustering algorithms to

initially identify and eventually eliminate outliers from true

data for single target tracking applications. To test the

possibilities for applying cluster analysis to the outlier

removal problem, a simulated set of noisy data with random
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noise peaks was generated in the following fashion. First, it

was decided to generate simulated data for only target 1 in

scenario 1 (see Figure 4.1). For this data, the mean SNR as

determined at a distance one yard from the source was set to 76

dB. For the data that were simulated, the threshold level for

minimum signal strength was set low enough to assure that

frequency and bearing estimates were output for each

measurement update, regardless of whether these estimates were

true signal measurements or random noise measurements. Data

were generated in this fashion for all three observing sensors

in scenario 1. After generating the data in this fashion,

efforts were then made to sort the data from each sensor in

order to separate the true data from the random outliers.

The results from this preliminary investigation

have been rather encouraging. For the two buoys where both

true measurements and random noise measurements were present in

the data, the tree diagrams output by the cluster analysis

program indicated that the program could differentiate between

the true signals and the random noise. However, for the third

buoy, the signal was so strong that no random noise peaks were

found in the measurements. For this case, the clustering

algorithm separated the data into three separate clusters and

then joined them together at high values for the dissimilarity

coefficient. These three clusters proved to represent the

three different frequency cells into which the measurements

fell. As will be explained, it is felt that this unexpected

problem was created by the normalization technique used to

pre-process the data forcing small differences to be magnified

many times greater than their true differences. Reviewing

these results, it appears as though the data normalization

question needs to be re-examined, but the overall results

obtained demonstrate success of the concept and merit

discussion.
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Specific results for sorting the true signals

from the outliers in the data gathered by sensors II and III

will be presented here. The simulated data is presented in

Table 5.1 for sensor II. The corresponding tree diagram

produced by the single linkage clustering algorithm is

presented in Figure 5.1. The data and clustering tree diagram

are not included for sensor III because the results were very

similar to those for sensor II. In all of these clustering

tree diagrams, the sample numbers of the candidate measurements

(objects) are found on the vertical axis and the associated

dissimilarity coefficients are found on the horizontal axis.

In Figure 5.1, the true measurements are found in the upper

portion of the tree diagram with tightly linked connections

between these data. In the lower half of the tree diagram,

loosely knit data are joined to the existing cluster at very

high levels of dissimilarity which indicates that these

remaining points have little resemblance to the points in the

upper portion of the tree diagram. Reviewing the tree diagram

in Figure 5.1, the true target measurements are found between

samples 5 and 15. Beginning with sample 9, the remaining

samples should be considered to be the outliers from this

measurement set because their frequency and bearing estimates

do not correctly correspond to a fairly smooth and continuous

curve as should be expected for this non-moving trajectory.

Similar behavior is found in the results for sensor III. From

observing the tree diagrams, obvious cutoff points can be

determined by big jumps in dissimilarity coefficients found

after these points. The dissimilarity coefficients associated

with these cutoffs are about 0.151 and 0.110 for sensors II and

III, respectively. Furthermore, if one examines Table 5.1 to

separate the data as suggested by this interpretation of the

tree diagram, one will indeed see that the outliers have been

appropriately sorted from the true measurements. The SNR of
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TABLE 5.1I

SIMULATED DATA WITH OUTLIERS

FROM BUOY II FOR TARGET I OF SCENARIO 1

--------DATA MATRIX

INPJT FOR4AT :
MAT IX NA4E : 3MPG

TYPE OF MATRIX : DATA
NUMBEP OF OBJECTS : 19

NUMBE4 OF ATTRIPUTES 4

WISSING VALJE CODE -9999.30
CUTPUT OPTION

DATA MATRIX

OBJECT # ATTRIBUTE #

TIME FREQ COS e SIN 0
1 2 3 4

1 5.O0 148.0500 .9827 -. 1853
2 15.U033 150.5500 -.3605 -. 9329
3 25.0030 150.5500 -.8212 -. 5737
4 35.0000 150.5500 -.6975 -.7166
5 45.0030 150.5500 -. 4321 -. 9018
s 55.0033 150.5500 -. 3333 -,9429
7 5.0030 150.5503 -. 25 -.9778
3 75.03j 15C.5503 .7187 .6951
9 85.0030 151.6500 -. 9861 -. I6Lb

13 95.0030 148.4500 .827Q -,5b9
11 135.0023 151.8500 .8682 -o4963

12 115.2033 150.5500 -. 4533 -. 8914
13 125.S003 147.7500 -. 3925 .9197
14 135.0,3 149.750 -. 27-f .9623
15 145.0030 150.5500 -.4358 -.9031
15 155.0000 147.6500 .6849 .7286
17 155.3003 150.9500 .9436 -. 3305
Ii 175.03-0 151.0500 .7222 .bgl Q

l 315.Coj3 150.1500 .9767 Z14
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the measurements in these data sets varied from nearly -10 dB

to over 4 dB. A five Hz frequency band was covered by a

linetracker containing fifty cells. Conventionally,

approximately a 0 dB threshold would be used to accept or

reject the measurements. This approach would have rejected all

of the noise measurements, but it also would have rejected some

true measurements. However, when no data were rejected by the

tbreshold test and the clustering algorithm was allowed to sort

the data, the clustering algorithm correctly chose data whose

detected SNR's were as low as -5 dB while it successfully

rejected random noise signals as strong as -1.5 dB. This

ability to intelligently compare data and choose true

measurements while rejecting noise seems to be a vast

improvement over thresholding data more to prevent false alarms

than to select all of the possible true measurements actually

produced by the signal processor.

A different response was found when cluster

analysis was used to sort the data gathered by buoy I for

target 1 of scenario 1. Target 1 traveled very close to buoy I

throughout the length of this short scenario, so the

propagation losses were never very large for this setting.
Surprising initially, the data, listed in Table 5.11, were

grouped into essentially three distinct clusters as can be seen

in Figure 5.2. After reviewing the results, it was found that

all three clusters coincided with the three distinct frequency

measurements found in the data. The changing dynamics and

geometries of this scenario forced the Doppler shifted

frequency to appear in three different frequency bins during

the observation period used for this scenario. Looking at
Figure 5.2, samples 2 through 7 appear as one tightly knit

cluster in the upper portion of the tree diagram. The

frequency estimates for all of these samples were 149.55 Hz.
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TABLE 5.11

SIMULATED DATA WITH OUTLIERS

FROM BUOY I FOR TARGET 1 OF SCENARIO 1

-DATA MATRIX

INPUT FORMAT
MATPIX NAME ODmG
TYPE OF MATPIX : DATA
NUMBEP OF OBJECTS : 1o
NUMBEP OF ATTRIBUTES 4
MISSING VALUE COCE : -9999.O0
CUTPUT OPTION : 2

-DATA MATRIX

1 2 3 4
1 5.0000 149.b500 .9999 -.0149
2 15.0000 149.5500 .9971 .0764
3 25.0000 149.5501 .9865 .1641
4 35.00oa 149.5500 .9775 .21095 45.0000 149,5500 .9618 .2736
6 55.0000 149.550C .9U 53 .32627 65.0000 149.553C .9481 .318f,8 75.J000 149.45CC .9175 ,3977
9 5.00CC 149.4500 .9027 .4302

10 95.0000 149.4500 .9123 .4096
11 I05.0000 149.4500 .8713 .908
12 115oOCOC 149.45%0 .861 *4398
17 125.oCOO 19.455Z .9057 .423Q
14 135.OCOO 14*i.4500 .868 5 .4665
15 145.0000 149.4500 .8640 .5035
16 155.00o0 149.4500 .8703 .4926
17 165.0C00 149.4500 .6482 .5297
18 175.Z000 14.450 .6747 *4647
1 185.0COC 149.450C .7968
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Following this cluster, a solitary cluster consisting of only

sample I is found. The frequency estimate for sample I was

149.65 Hz. Following this cluster, the remaining samples 8

through 19 are found grouped into one large cluster. For each

of these samples, the frequency estimates were 149.45 Hz. All

three clusters are eventually merged into one cluster as should

be the case for these data, but the clusters are joined at such

high levels (approximately 0.270) relative to the other

clusters, that one would probably assume they should not really

be joined together. Unfortunately, an examination of the data

shows that they are all true measurements and belong to the

same target.

Intuitively, this data separation is

disconcerting because we want the clustering algorithm to sort

outliers but not to falsely sort the data from one source into

multiple data sets. Careful examination of the raw data in

Table 5.11 would tend to indicate that the problem could lie

with the data normalization technique used on the raw data.

For the frequency and sin raw data from buoy I, the maximum

difference between any two samples is only 0.2. Recalling the

normalization method used to pre-process the data, this 0.2

difference appears in the denominator of the normalization

equation. Instead of scaling any differences to be smaller,

this denominator effectively magnifies any differences by a

factor of five. On the other hand, if one reviews the raw data

for buoy II in Table 5.1, the differences between the maximum

and minimum values used by the normalization equations equal

approximately 4.2 and 1.97 for frequency and sin 3,

respectively. For buoy III, these differences will be

approximately 3.9 and 0.7 for frequency and sin 6,

respectively. Buoys II and III tend to normalize the raw data

such that the numerical differences for the attributes are made

smaller. Conversely, the differences for buoy I are magnified
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after normalization because all of the raw data already have

small variability. With common normalization scale factors for

each attribute for all of the buoys, the results from Buoy I

would be much better than that now seen in Figure 5.2. In

fact, the true data cluster for Buoy I should be much tighter

knit than the clusters of true data for the other two buoys.

This hypothesis for explaining the discrepancies in the results

for the three buoys has not yet been tested, but it makes sense

intuitively. Clearly, the current data normalization technique

seems to have some problems, but the single linkage clustering

algorithm, nonetheless, shows promise for solving the outlier

identification and removal problem.

5.7 Clustering to Sort Multiple Target, Multiple

Linetracker Data

After examining the possibility of using cluster

analysis to solve the outlier removal problem associated with

single target data, the use of cluster analysis to sort data

for the multiple target tracking problem was investigated. For

the multiple target problems where only passsive DIFAR data

will be used, no a priori knowledge of how many targets are

present or what measurement values to expect will be

available. An approach such as cluster analysis which looks

for natural trends or natural groups without assumptions could

be a reasonable approach to this problem. After noting the

success with sorting simulated weak signals from random noise,

a natural progression would be to use cluster analysis for data

sorting in the multiple target tracking problem.

In this subsection, only simulated multiple

linetracker data as described in Subsection 4.2 were used for

the data sorting study. The 4-tuples consisting of the time
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tag, frequency estimate, and the cosine as well as the sine of

the bearing estimate were used to describe each detected

signal. Idealized linetracker data were simulated which

ignored the possibility of signal interference from other

sources when the measurement estimates were generated. In this

section, the merged, multiple target linetracker data for each

sonobuoy are examined to determine whether cluster analysis can

be used to separate this data into distinct sets of individual

target data. The raw data and clustering tree diagram for

sonobuoy I of scenario 1 are included in this subsection, but

the raw data and tree diagrams for sonobuoys II and III of

scenario I as well as those for all three sonobuoys of scenario

2 have been excluded from this report to streamline the

following discussions.

5.7.1 Multiple Linetracker Cluster Results for Scenario

I - The results for each of the three sonobuoys from scenario 1

are discussed here. All of the data were generated in the

normal fashion with a threshold of 0 dB used to determine

whether to accept or reject a measurement estimate. Each

target in the simulation transmitted only one narrowband tone

at 150 Hz. Originally, a mean SNR value of 76 dB as measured

one yard from the target was used to generate the

measurements. However, difficulties were encountered in

gathering sufficient data from all the targets for the

clustering algorithm to effectively sort the data, so the

transmitted SNR level was increased to 80 dB for all three

targets. Simulated linetracker data for the targets were

generated and then merged. In all further discussions, a

sample will be denoted as an outlier when its frequency

estimate varies too drastically to fit in the rather

continuous, chain-like curve expected for non-maneuvering
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targets. When necessary, drastic changes in bearing

characteristics have also been considered in labeling a sample

to be an outlier.

The simulated multiple target data for buoy I is

presented in Table 5.111. A three-dimensional representation

of these raw data is provided in Figure 5.3. In this plot, the

curves represent the true, uncorrupted measurements that

correspond to the actual dynamics and geometries of scenario

1. The pluses found close to these curves represent the

simulated, noisy, non-Gaussian measurements produced for this

simulation. The corresponding tree diagram output by the

cluster analysis program is shown in Figure 5.4.

Looking at the tree diagram in Figure 5.4 for

buoy I, one can see that there exists many different levels at

which single data points and small clusters are joined.

Eventually, all the clusters are linked into a single cluster.

However, if one goes down a few levels from the level where all

of the data are linked, the data sets for each individual

target may be found in three separate clusters. After looking

at the clusters and knowing from our data simulation which data

points belong together, it is evident that the data for target

2 are contained in the upper portion of the tree diagram

between samples 34 and I. In the middle portion of this tree

between samples 24 and 5, the data for target I are found.

Data for target 3 are found in the lower portion of the tree

diagram between samples 32 and 2. The very last sample, number

38, nominally belongs to target 3. However, the clustering

tree diagram indicates great difficulty was encountered in

linking this sample with any of the other data. A

re-examination of the data shows that sample number 38 contains

a frequency estimate that agrees with the adjoining frequency
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TABLE 5.111

MULTIPLE LINETRACKER DATA FROM BUOY I OF SCENARIO 1

-: A ATTIX

TY1 % CjTF -'T9IQ A T

TyM~E- OF 4TRIXCIA%

NL14-3E.P "F ATT- I uTES

:1 T T OP i : ,'

-- - -DATA k*ATRIX - - - - - -

1 :5 1
11 .2 . 6". 5 1 . 2 7

3 15.0CCGj 149.95C0 .998c -. 0633
4 13.0023j 1'49.55Co .9961 L6
5 25 .0 0:'c 1 49 .9 5 r) 0 499 . 0167
5 25l-- 1L9.55CO .9 461 .ibb1
7 15G.1503 .7Z1"4 .6Z2

11~ ~ 4SNJ j39Z9E .99" 71777

15 S.60 i 1.Y50 79- 1 23
ib 5. 201 1L49*55cz .~

.- 41 -'- 77fl

z7 12.0 149 . 5 5 .9 4 .256
b 0 12. c 3 49.5 - ~ 9 74-75'

Z7 123.0010 149o6500 Ob365 .26
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-3 1 45 . 2 1 9. _ 4 ° 49 . i 5
3"i i: ...... IL .-:  ...
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35 1 45. - i5. .. .
35 ! 5. : LA . SJ .2- .2

7 153. ' IL.,., -

43 165.L22: lU9.450Z .557'.'15

41 155. C0 j IEC.LD .77, .63 b
Ls_ P 7 5 . 3 0 L- 7, .. 9 . 7 5 7- 3 2 -. 3777
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estimates for target 3, but a close look at the cosine and sine

of the bearing estimate for sample 38 shows that this bearing

estimate differs substantially from the adjoining bearing

estimates for target 3. Looking at the clustering tree diagram

and the actual measurement values, it appears as though sample

38 should best be labeled as an outlier and removed from the

data set. When sample 38 is eliminated as an outlier, the tree

diagram can then be interpreted as correctly sorting the data

into individual target data sets when a threshold level of

approximately 0.140 is used to halt the linking of the

clusters. If clusters are linked for dissimilarity coefficient

values smaller than 0.140, the data will be correctly sorted

into three different data sets, each of which corresponds to

one of the three targets used in this simulation.

The tree diagram clustering results for the

merged linetracker data for buoy II of scenario 1 exhibited the

same behavior found in Figure 5.4 As always, the tree diagram

showed all data to eventually be linked into one conglomerate

cluster. However, when the tree diagram was reduced to the

point where only three smaller clusters plus one data point

were found, the data for each individual target were found to

be correctly sorted. In the upper portion of the tree diagram,

data for target 3 were found. Following this clump, the next

six samples formed a cluster which contained the data for

target 2. Except for the last sample in this tree diagram, the

remaining data were grouped into a cluster of data which

corresponded to target 1. Again, the last sample appeared to

be an outlier, so it was eliminated rather than included with

any of the other data. The frequency estimate for this last

sample corresponded to the data for target 2, but the bearing

estimate was so poor in comparison to the rest of the data for

target 2 that it could not be included into this data set. If
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a threshold of approximately 0.182 for the resemblance matrix

coefficient was used to decide when to stop joining clusters

together, the multiple target linetracker data for buoy II

would be correctly grouped into three sets of data. Each of

the three clusters corresponds to an individual target. The

last sample in the tree diagram is an outlier which should be

eliminated from this data stream.

Lastly, the results from scenario I for buoy III

will be analyzed. Reviewing the tree diagram for this

sonobuoy, no obvious outliers were found in the data. If one
looked for the clustering level where all the data are grouped

into three separate clusters, the correctly sorted individual

data sets for each of the three targets in this scenario are

found. Looking at the results from this tree diagram, it could

be seen that the threshold value appropriate for this case

would be approximately 0.130 for the dissimilarity

coefficient. In conclusion, if these clustering results are

appropriately analyzed and interpreted, the cluster analysis

approach has been shown to provide a viable means for sorting

multiple linetracker data into single target data sets for the

multiple target problem.

5.7.2 Multiple Linetracker Cluster Results for

Scenario 2 - The results from using cluster analysis to sort

multiple linetracker data for scenario 2 are discussed in this

subsection. Recall from Figure 4.2 that this scenario

consisted of two targets that traveled parallel paths with
identical velocities. This trajectory was expected to create

ambiguities particularly for buoys I and III due to the strong

similarities in both Doppler shifted frequency and bearing

estimates that would be detected by these sensors. From this

pathological case, some bounds could be established on the
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sensitivity of the data sorting by cluster analysis to strong

similarities in signal characteristics from two different

sources. In this section, only the results from successful

data sorting runs will be presented. As will be detailed in

the succeeding discussion, signals from two different sources

that are any more similar than the bounds established here will

most likely be inseparable by the cluster analysis approach to

data sorting.

The case where successful data sorting was first

accomplished for buoy I occurred when the unshifted center

frequencies transmitted by the two targets were separated by

0.5 Hz. Attempts were made to sort data when the center

frequencies were separated by 0.0, 0.1, 0.2, 0.3 and 0.4 Hz,

but the single linkage clustering algorithm could not suitably

sort the data for these five cases because there was too little

difference in the attributes between the two signals. Since

the bearings could not be changed for this scenario, it was

decided to vary the transmitted center frequency for the two

targets until the data could be suitably sorted. The upper

portion of the tree diagram for this case contained the sorted

data for target I. All but the last three samples of the

remaining half of the tree diagram contained the data for

target 2. The last three samples in the tree diagram were

again considered to be outliers and were eliminated from the

data stream. The dissimilarity coefficient value associated

with this cutoff level was approximately 0.130.

Not so surprisingly, the clustering results for

the multiple linetracker data from buoy II of scenario 2 were

different from the results presented above. For buoy II, the

two targets are moving toward the sonobuoy rather than past it

as is the case for buoys I and III. With the targets moving at
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this sensor at the same speed and same heading, the Doppler

shifts will be the same but the separation in the bearing

measurements will be larger than for buoys II and III. For

buoy II, a difference of only 0.1 Hz between the transmitted

center frequency values for the two targets was sufficient for

the clustering algorithm to sort the data. When there was no

difference in the transmitted center frequency values for the

two targets, the clustering algorithm failed to adequately sort

the data. The upper half of the tree diagram for buoy II

contained all of the data for target 1. The remaining lower

half of the tree diagram contained the data for target 2. For

this tree diagram, there are a few samples that were more

dissimilar than the other samples in the two clusters, but no

obvious outliers could be found. For this tree diagram, a

threshold cutoff of approximately 0.292 would result in two

well defined clusters which contained data for the two targets

found in scenario 2.

The results from clusterng the data for sonobuoy

III were expected to be fairly similar to the results for

sonobuoy I, and this proved to be the case. The transmitted

center frequencies for the two targets had to be separated by

at least 0.4 Hz for the clustering technique to properly sort

the data. This is 0.1 Hz closer than the results from buoy I,

but this difference is not considered to be significant. Once

again, when the data are reduced to two clusters rather than

one, each of the resulting clusters contains data for an

individual target. A cutoff point of 0.133 for the

dissimilarity coefficient would result in the correct sorting

of the data into two sets of individual target data for buoy

III.
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5.7.3 Conclusions from Using the Single Linkage

Clustering Algorithm to Sort Simulated Multiple Linetracker

Data - The results from applying cluster analysis techniques to

data sorting for multiple linetracker data have been quite

encouraging. For scenario 1, three identifiable clusters which

contained the data for the three targets could easily be found

if the observer knew in advance to search for only three

clusters. The results from the second scenario indicate that

there are limitations as to how similar the data can be before

the clustering algorithm can successfully sort the data into

individual target data sets. Either the frequency or the

bearing measurements or both of these measurements must have

identifiable differences that are not lost in random noise

before cluster analysis can succeed in separating the data.

Unfortunately, no hard fast rule for determining a threshold

level can be established from these results to decide when the

joining of clusters should be stopped by the single linkage

clustering algorithm. Simply for the data sorting problem,

this threshold level varies from as low as 0.129 to as high as

0.292. In the outlier removal study, this threshold level

varied from 0.101 to 0.270. Obviously, this threshold value is

a dynamic parameter that depends strongly on the data

normalization technique and that now varies from one

application to the next. Without any means to determine or fix

this threshold value a priori, it is impossible to automate

this cluster analysis procedure so it could be used without any

human decisions being required. The information is available

in the clustering tree diagrams as has been shown in the

previous discussions, but the question of automating and

properly interpreting the results from this process when no

a priori information is available for the data still remains a

very troubling problem.
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5.8 Clustering Frequency Spectra Data: Establishing

Frequency Tracks

After seeing the qualified success obtained from

using cluster analysis to remove outliers and sort multiple

target linetracker data, it was decided to examine the

possibility of using cluster analysis for one more

application. The single linkage algorithm might be used to

analyze simulated DIFAR frequency spectra to separate the

signals from the noise found in the spectra. If so, the

clustering approach could recognize either single tones or

multiple tones found in the frequency spectra instead of

recognizing only the single strongest tone as the MAX-OR

processor does. If multiple signals could be recognized with

this approach, then the need for multiple linetrackers to track

multiple frequency lines could be eliminated. Furthermore,

some of the restrictions might be relaxed on how close these

multiple tones could be in the frequency spectra before they

could be separated. The preliminary results have been

encouraging and have shown that this approach can sort the

signal data from most of the random ambient noise. However,

the data could not also be sorted into individual target sets

with this approach.

5.8.1 Results from Clustering Multiple Target Frequency

Spectra for Scenario 1 - The table of the simulated multiple

target frequency spectra data for buoy I of scenario 1 is

presented in Table 5.IV. The first column in this table is the

sample number assigned to that prospective measurement. The

next column, labeled "" in the table, is the time tag of the

measurement. Following the time tag is the frequency bin

number for the simulated measurement. The last two columns
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TABLE 5.IV

SIMULATED MULTIPLE TARGET FREQUENCY SPECTRA

FROM BUOY I OF SCENARIO I

- ---- --- DATA MATRIX-------

INPUT FORmAT :
MATRIX NAmE : PWRI
TYPE OF MATRIX : DATA
NUMBER OF OBJECTS : 1EO
NUMBER OF ATTRI9UTES '4

PISSING VALUE CCDE : -99 99.CC
OUTPUT OPTICN : 2

----------DATA MATRIX-------

S 4
1 5.2Z0 21S..CCC .9c89 -.- 476
2 5 ccoc 2-.-0ZC 1.CcO c -. '41
3 5.CC3C 21 .O 69966 9 2 C
S 5.0CCC 26.QZCC .8952 -. 4457
S 5.dC 0 28 .2:0C b!63 .7715
6 5.COO2 29. 00 -.6213 -o7431
7 15.2u0or 13.C "Dj' -. 2291 .9734
q 15.0C30 21. C rt .9961 . L
9 15.00c: 2S.2 W .9963 -. L;:79

1. 15.02 28.302 .7376 b75,
11 25.CCCO l .:n2r -. 4072 a?33

17 25.gC03 74.nC%2 .3743 -o 94bO
14 25..300C LS. Oc, .9Q77 -7 8

16 35.-230 21.060. .9767 .. 145
17 35.-?00C 2S..OIC .9cog 9996
la 35.30000 29.00r-r . d122 .'!3!
10 35.2C ozm 4 -. 9986 -.

Z2 35.-c 3 . Z87
4 ,. L Z IC Z C. 0 -. 7 110 7l --Z

22 45.,0C2 21.,r," .9623 .ZTU1
2 3 45 .V0c0c 24 . 0J' .":2
2 t 45.jf7C. 25.COC' .9)65 3 %93Q
25 45.0Czg 29.uCC:r .7659 uu3l
26 45.0 CG7 c.Cr)C0q -. 93,29 -. 36l
27 55,LCOC 17o.0.JO -.1616 .9969
28 55.0000 21.0032 .9484 .3170
29 55.0000 25.30U0 .8835 -. 4bSk
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TABLE 5. IV -- Continued

30 55.CCCO 26..JCCO -.8181 -,575C
31 r-5.!0c0c ?800r .5511 .84
32 55.0-L-c 2 *cJIL -. 8 9 1 -.4r-41
33 55s 000 71.:CCr? -.tbPC7 o7326-
314 55 SZCOO 39.~ .J-c 04 24 1 o i -56
35 55.r000 45.Q0G'M .7176 o6064
36 65.CCOO 13.i30CC o3475 -.9377
37 65.0000 14 90Wf -*6714 o7980
38 65.3001 ob3~2C46 .7065
39 65.JCwOA o110~ 9'62 .323
140 6S.w..ZUC0 23....0, o9654i7S
41 65.OCOO 25.00,; .9S29 .1339
42 65.00i ?8.O0.C! s7543 o6566
43 65.3rOOf 37.cOC-r .9r39 .-- (
44 65.COO u7.JOQ'c .9'434 o3317
45 75 *W000 9.~ ai zc .734 -o4?7 1

46 75.3CW"J 14..30ZC o74131 .bl
47 75.0Q00 20.0C,:2 s923.3 .3849
48 7590COO 21.J0; .9306 03661
49 75.rC000 25*JC~ .9931 o1l6P
so 75.OCOO 27.L-02' .7584 bl
E1 7 S. ZOl002 Z -0'- .7 C415 .7?96
52 75.Z000 44%')j .4CO7 -.9162
53 85*G030 8*%.j00l -o7C09 -.7132
54s 85.0000c 12.0000 09999321
55 P50000O 18.00cr o6LA 061
56 es.c000 23.Lc&n .9103 e414C
57 -, .2j Z c. 0 -1 - - 1 .c c0 -. W771
58 8 5..Z c0 a 2 &. L; 0C .9621 Z 7 2,
59 85.c0033 27.2W .7P97 so134
60 85.0GflO 28.UO;L -.5912 -.30,66
61 85.3000l 31.30~c .5755 .s7
62 P 5 . CC3 4 7.7: .9874 .i98r
67 q %..0 :z.l023 .9P'07 -o715
b4 9 5 .0030 Z2'.0c .9 1 Z7 .4.5
b5 Q5oJO0J 23.000-i .2741 -.9617
66 95.000 2.Occ .3415 -.9399
67 050lccl 77.00:'n2 o6077 .7164

71 JC5.oZCOO 34.CO020 .6546 -. il93
72 1 5o.CCO S.OC-- -.9735 .2285
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73 llb.-Co 5.00.0 .4C96 -.9123

75 115.2O CO o4.3 .9987 -. ,511
76 115•LCOC0 5.OC0 .8943 .4474
77 l15.6oG 27.,O20r .7384 o74
78 125.000 14 .0- .6C36 -o7973
79 125.2CC) 15.,Oc .9943 .1262
27 125.20CC0 0892 o879? •
81 125.200) 24. J0C5 .9934
e2 125.C2J Z7.gg02 .5.19
83 135.2o0 14.u 60 -. 7164 -. o977
84 135.2C00 16.CC.C -1.0003 .J",4
85 135.]000 2'J.20Wn 080-7 .4679
86 135. 00 24. 0.59 • 258 Q
87 135. J5 27.C1 71 J7r76 •oS 9
6 13 5•0J 4 P0C Zr -.Z223 *9757
89 14.5*600 6. G .G232 -. 9997
90 145.QCOJ 20.JC] .8692 .4045
91 145.30CO 24.ou0C .g9q4 .092
92 1 5.O00 76 .00,r .5615 -. d275
93 145.GO03 27.0 C C .666 .7717
94 145.Z00 0 3C . 03286 .9r12
95 145. CC3 2.0>r .71:6 .736
96 155.30C3 l.G0J0 -. 7663 -.b425
97 155. '00 ?.--J.X .8701 &412-
98 155.00c o  ?4.0%C .916? .4.07
99 155.G03 ?7.,;C- .7185 oQ56

10C 165.20C37 -7.2 r .

1Z1 165. 0C3 2.3 - .9 41 .i776
IC2 165.oO02 .5.,_"2 •538 .o427
1Z3 165.ZtM 2, .7o . 6 4b66
IOU 16 i• -TO2 73 •O "  -. 8 !221 r 4

1c 165 0 1C,0 9.LX.- -•6967 -. 7274
IC6 16 .. r] --C 3 9. 0. -. ,4797 o 7 5.~ "
IC7 7 5S..-;00 76.0-, - .4S7,? - i5 3

1C8 175.oZ000 1..AM -. 1935 q I I
IC 175._-02 2z. 00 .S'92 4"-4U
110 175 .C0 2 . 2 .119 5 01

115 185.,_CC3 12..220 -. 9:71 .= o

116 185.600C 15.2020 .4275 -. 9040
117 18 54 .0 2 1 .. 9 9 .197 .5727
118 185. ,00 23.J0 ' .974 .24 1 6
I19 195. Z1, 27.:o .7k2 . 790

G 185.0co3 30. j -. 0542 .9q4
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contain the cosine and sine, respectively, of the bearing

estimate associated with the prospective measurement. The data

for this buoy were generated in the manner described in

Subsection 4.3. The associated three dimensional plot of the

omnidirectional power versus frequency as a function of time

for the three targets observed by sensor I of scenario 1 is

shown in Figure 5.5. For this simulation, a five Hz frequency

band was covered by 50 cells from a comb filter bank. This

observed frequency band and the quadruplet of attributes

assigned to each prospective measurement will remain the same

for all the simulated multiple target frequency spectra

generated for both scenarios I and 2. Note that multiple

frequency estimates are generated at each time, and that they

can lie anywhere within this five Hz band. As for Subsection

5.7, outliers were determined primarily by unacceptable

discontinuities in the frequency estimates as functions of

time. Where it proved to be useful, drastic variations in

bearing estimates were also used to label data samples as

outliers.

The tree diagram of the single linkage clustering

algorithm output for the data in Table 5.IV is presented in

Figure 5.6. The true signal data for this scenario are all

found in the upper portion of this tree diagram. All of the

real signal data are found between samples 110 and 70 in the

tree diagram. From samples 79 on down, only random ambient

noise is found. Between samples 110 and 70, two obvious

outliers are found in samples 40 and 102. Other possible

outliers may exist in this data, but these two samples are the

most obvious ones because their frequency bin numbers do not

correctly correspond to any of the true data for this time

frame. Closer examination of Figure 5.6 shows clusters of

partial data sets for each target. The data between samples
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Figure 5. 5 - PLOT OF SIMULATED MULTIPLE TARGET FREQUENCY

SPECTRA FOR BUOY I OF SCENARIO 1 (3 TARGETS)

110



9 4-9

*. (1) C

- _ _ -- r

t~

cn 4

& co

4..4

I0

E- ::D

t44 0-

cc
41 'i go

-o
-4 C

ca

010

,C

9 ,,...

X 46

x x

xor X I

61 646 Z <

, f . 9 .

cc Z I x I

o 9 - I , 9 9

, 9 9 - 9b9

' Z 9 I I

' N Q ~ 9 o 9 I I

- -~ -- v ~ - 9 9 9 9 9 9 9 9 I 9~ I 9 9 9 9 9 9 9 9 9

i°9 9
,O ~ I

*" 9 9 , I I ,9 9 9 9 9 I t

I -- 1l- -,- -I

111



C

(00

-I, -)

0a 0

7-7-J

00

7C 7

4L~

Iw

~112

... . . .. ... ... .... ... ... . . . ...... . ... .. ... 'Wi .... ...., . ... ...



0

o

P. .M

0i

al ci

a

CI

U3l)

iC

..J '-

6i

- -- -P4

7---------------------t - - --

--- -- - - - - -- - --- - -- ---- -- - --- - - - - -

7I

r- cc aD %a a. a. rin n .0 ev a a. CP

113



0

o 4-)

I

---------------------------

a -

"d. .. - . . . . . .. . . I . . . . . . . I--I 1 I I .. . . il l i
0 Ia



Ca

0

2

(

---- S

----- a----

a a

a a-~aa a
- a a a

a a a a a
~ -- ~----- a a a a

a a a a a .9-4

--- a-- a a a a a
a a a a a a a a
a - a a a a a I 0
a a a a a a a a a Q

- - a a a a a a a
a . a a a a a a a a a
a a a a a a a a a a a
a a - I a - a a a a a a a

a a a a a a a a a a a a a a
a a a a a a~. a a a a a a a a
a a a a a a a a a a a a a a

a a a a a a a a a a a a a a
a a a a a a a a a a a a a a a a '.0
a a a a a a a a a a a a a a a a - - a -
a a a a a a a a a a a a a a a a a a
a a a a a a a a a a a a ~ a a a a a a
a a a a - a - a a a a a a a a a a a a a a
a a a a a a a a a a a a a a a a a a a a 0)
a a a a a a a a a a a a a a a a a a a a
a a a a a a a a a a a a a a a a a a a a
a a a a a a a a a a a a a a a a a a a a
a a a a a a a a a a a a a a a a a a a a
a a a a a a I a a a a a a a a a a a a a
a a a a a a a a a a a a a a a a a a a a
a a a a a a a a a a a a a a a a a a a a
a a a a a a a a a a a a a a a a a a a a
a a a a a a a a a a a a a a a a a a a a
a a a a a a a a a a a a a a a a a a a a
a a a a a a a a a a a a a a a a a a a a
a a a a a a a a a a a a a a a a a a a a
a a a a a a a a a a a a a a a a a a a a
a a a a a a a a a. a a a a i a a a a a a
a a a a a a a a a a a a- a a a a a a a a
a a a a a a a a a a a a a I a a a a a a
a a a a a a a a a a a a a a a a a a a a

a a a a a a a a I a a a a a a a a a a
a a a a a -a a a a a a a a a a a a a a a
a a a a a a a a a a a a a a a a a a a a
a a a a a a a a a a a a a a a a a a a a
a a a a a a a a a a a a a a a a a a a a
a a a a a a a a a a a a a a a a a a a a
a a a a a a a a a a' a a a a a a a a a a
a a a a a a a a a a a a a a a a a a a a
a a a a a a a a a a a a a a a a a a a a
a a a a a a a a a a a a a a a a a a a a
a a a a a a a a a I a a a a a a a a a a
a a a a a a a a a a a a a a a a a a . a . a
a I a a a a a a a a a a a a a a a a a a a
a a a a a a a a a a a a a a a a a a a a a
a a a a a a a a a a a a a a a a a a a
a a a a a a a a a a a a a a a a a a a a a
a a a a a a a a a a a a a a a a a a a a a
a a a a a a a a a a a a a a I a i a a a
* a a a a a a a a a a a a a a a a a a a a
a a a a a a a a a a a a a I a a a a a a a
a a a a a a a a a a a a a a a a a a a a a
a a a a a a a a a a a a a a a a a a a a a
a a a a a a a a a a a a a a a a a a a a a
a a a a a a a a a a a a a a a a a a a a a
a a a a a a a a a a a a a a a a a a a a a

a a a a a a a a a a a
a a a a a a a a a

a a a a a a a a a a a a a a a a a a a a a
a a a a a a a a a a a a a a a a a a a a

aaa
aaa a: aa a aa a a aa a a

g a a a a a a a a a a a a a a a a a a a a a

U WI N C N O N C. C 'C WI - WI at WI C C N C

a S C N 0 N N C 0' 0 L~ N ~ 0 '4 0 ~ - - ~ WI

115



a

-'4,N
Go -
- a a
a a a a

a a

a a ac.a
* a .
o a a
* a a
a a a

-- a-- a
a a a

a a a
a a a a ~
a a a a a -
a a a a at'e
a a a a
a a a a a
a S a a a

S a a a
a a a a a

a----------------a a a a
a------------------------a a a a a a

a a a a a a as
I----------a a a a a a a

a a a a a a a
a a a a a a a a

a a a a a a a a
a a a a a a a a

I I a a a a a a a* a a a a a a a
a a a a a a a a
a a a a a a a a a
a a a a a a a a aa'4
a a a a a a a a

* I a a a a a a a a -
a a a a a a a a a
a a a a a a a a a a
a a a a a a a a a a
a a a a a a a a a a
a a a a a a a a a a
a a a a a a a a a '0
a a a a a a a a a a

a a -a - a a a a a a a a-
a a a a a a a a a a a a u '
a a a a a a a a a a a a -
a a a a a a a a a a a .

a a a a a a a a a a a
a a a a a a a a a a a a
a a a a a a a a a a a a U
a a a a a a a a a a a a
a a a a a a a a a a a . o
a a a a a a a a a a a a
a a a a a a a a a a a a~.
a a a a a a a a a a a
a a a a a a a a a a a a-
a a a a a a a a a a a
a a a a a a a a a a a a
a a a a a a a a a a a a
a a a a . a . a a a a a a a
* a a a a a -a - a a a a a a
a a a a a a a a a a a a a .
a a a a a a a a a a a a a a
a a a a a a -a - a a a a a a a ao
a a a a a a a a a a a a a a a aC LA
a a a a a s-a.- a a a a a a a a a a
a a a a a a a a a a a a I a a a
a a a a a a a a a a a a a a a a a
a a a a a a a a a a a a a a a a a
a a a a a -- a - a a a a a a a a a a a
a a a a a a I a a a a a a a a a a a
a a a a a a a a a a a a a a a a a .1
a a a a a a a a a a a a a a a a a a
a a a a a a a a a a a a a a a a a a
a a a a -- a.- a a a a a a a a a a a a cc
a a a a a a a a a a a a a a a a a a a
a a a a a a a a a a a a a a a a a a
a a a a a - a a a a a a a a a a a a a a
a a a a a a a a a a a a a a a a a a a a
a a a a a a a a a a a a a a a a a a a a
a a a a a a a a a a a a a a a a a a a a
a a a a a a a a a a a a a a a a a a a
a a a a a a a a a a a a a a a a a a a a
a a a a a a a a a a a a a a a a a a a a A
a a a a a a a a a a a a a a a a a a a a
a a a a a a S a a a a a a a a a a a a a
a a a a a a a a a a a a a a a a a a a
a a a a a a a a a a a a a a a a a a a a
a a a a a a a a a a a a a a a a a a a a
a a a a a a a a a a a a a a a a a a a a
a a a a a a a a a a a a a a a a a a a a
a a a a a a a a a a a a a a a a a a a
a a a a a a a a a a a a a a a a a a a a
a a a a a a a a a a a a a a 1 a a a a a
a a a a a a a a a a a a a a a a a a a a
a a a a a a a a a a a a a a a a a a a a J
a a a a a a a a a a a a a a a a a a a
a a a a a a a a a a a a a a a a a a a a
a a a a a a a a a a a a a a a a a a a a

a a a a a a a a a a a a
a a a a a a a a

a a a a a a a a a a a a a a a a a
a a a a a a a a a a
a a a a a a a a a a a a a a a a a a a a
a a a a a a a a a a a a a a a a a a a a rc
a a a a a a a a a a a a a a a a a a a a n
a a a a a a a a a a a a a a a a a a a
a a a a a a a a a a a a a a a a a a a a
a a a a a a a a a a a a a a a a a a a a
a a a a a a a a a a a a a a

( a : : : a a a a a a a a a a a a a
a a a a a a a a a a a a a a a a a a a
a a a a a a a a a a a a a a a a a a a a
a a a a a a a a a a a a a a a a a a a a O

aS a a a a a a a a a a a a a a a a a a a a C
.3 a a a a a a a a a a a a a a a a a a a a C
g a a a a a a a a a a a a a a a a a a a

K c a. cv ~ r- '-a.- C ua ra r.J
am

a' 116



Tram Amied Scecs

110 and 75 in this tree diagram consist of a partial data set

for target I. Next, from samples 47 through 2 are found most

of the data for target 1. However, the last two samples of

this cluster, samples I and 2, are shown really to be more

tightly associated with the next cluster of data which contains

the remainder of the data for target 2. The cluster of data

between samples 9 and 76 contain the remainder of the data for

target 2 except for outlier sample 40. The remainder of the

tree diagram that contains the real data, samples 50 through

70, has the signal data for target 3. Again, sample 102 should

be excluded from this last cluster because it really is an

outlier. All of the true measurement data are found in the

upper portion of the tree diagram up through sample 70, but the

previous discussion has shown that cluster analysis only

succeeded in separating the signals from the noise. It did not

properly sort the data into individual sets for each target.

To properly separate the signal data from the noise, a

threshold value of approximately 0.075 is needed.

The clustering results from sorting the simulated

multiple target frequency spectra for sonobuoys II and III of

scenario 1 yielded very similar results to those seen in Figure

5.6. For both sonobuoys, the upper half of the clustering tree

diagram contained the real data for the three targets. The

other data samples were found to be random noise. In neither

case were the true data properly sorted into individual target

data sets, but the true measurements for all the targets were

properly sorted from most of the noise. For sonobuoy II, a

dissimilarity coefficient cutoff value of approximately 0.104

would result in all of the true data being separated from all

of the noise except for seven outliers which appear in the data

sorting. If a threshold value of 0.090 was set for the

clustering tree diagram for sonobuoy III of scenario 1, the
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resulting data set would contain all the true measurements for

the three targets plus eight known outliers. Again, the data

were not properly sorted into individual target sets, but the

single linkage clustering algorithm did sort the true

measurements from most of the noise.

5.8.2 Results from Clustering Multiple Target Frequency

Spectra for Scenario 2 - Finally, the single linkage clustering

algorithm was tested with simulated, two-target frequency

spectra data from scenario 2. For this simulation, a 0.2 Hz

difference in the transmitted center frequencies was used to

insure that there would be no overlap between the two signals

in one frequency bin. As was the case for the data from

scenario 1, the clustering approach was fairly successful in

separating the true signals from the ambient noise, but it did

not adequately separate the data into individual target sets.
The results for the three sensors from this scenario are

described in the following paragraph.

The clustering tree diagrams for each of the

three sonobuoys of scenario 2 again sorted the simulated

frequency spectral data so that all of the true measurements

were found in roughly the upper half and the noise in the

bottom half of the diagrams. However, in no case were the true

measurements properly sorted into individual target data sets.

Also, the tree diagrams associated with sensors II and III

included at least a few outliers in the separated measurement

set. Only sensor I completely eliminated any obvious outliers

when a dissimilarity coefficient value of approximately 0.060

was used to separate the true data from the noise. For sensor

II of scenario 2, a threshold level of 0.065 for the

dissimilarity would separate the true data from most of the

noise, but would result in six known outliers showing up in the

118



Trace Apiud Science

measurements. Finally, a cutoff value of 0.050 would be needed

for the dissimilarity coefficient for sonobuoy III to separate

the true measurements plus two outliers from the remaining

random noise. Once again, the measurements were not properly

sorted into individual target sets.

5.8.3 Conclusions from Using the Single Linkage

Algorithm to Sort Simulated Frequency Spectra Data - The

results from applying the single linkage clustering approach to
data sorting at the frequency spectra level have been both

encouraging and discouraging. The encouraging results have

been that this approach can separate the multiple narrowband

frequencies from most of the ambient noise found in the

frequency spectra from the simulated DIFAR processor. One of
the discouraging results is that this approach does not

suitably sort the data into individual target sets. Another

discouraging result is that once again, no hard fast rule for

adopting a clustering threshold level can be readily chosen by

reviewing the results of these studies. For scenario I, the

threshold levels varied from 0.075 to 0.104. For scenario 2,

these levels varied from 0.047 to 0.065. Some of the

discrepancies in clustering threshold may be caused by the data

normalization method employed. Perhaps this threshold level is

a dynamic factor which must be allowed to vary from one problem

to another. The question is what type of dynamic relationship

can be assigned to the program or what type of normalization

scheme should be used to allow the results to become automated

rather than depending on human interpretations to pick the

optimal clusters. Despite the shortcomings of this approach,

it now appears as though this technique can be used to pick

multiple peaks from a DIFAR processor so that data sets of the

form used in Subsection 5.7 could be gathered for multiple

target scenarios. Should this be the case, then the results
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from Subsection 5.7 would indicate that the data could again be

clustered to sort out outliers and to separate the data into

sets of individual target data. These results would seem to

suggest the need for a two stage clustering scheme. The first

stage would separate the multiple target signals from the noise

and the second stage would sort the data into individual target

sets.

5.9 Conclusions on the Use of Cluster Analysis for

Data Sorting in the Multiple Target Problem

Generally speaking, the hierarchical,

non-overlapping single linkage clustering algorithm chosen for

this study has shown potential for solving the data sorting

problem associated with multiple target tracking. The single

linkage cluster analysis program has been used to investigate

three facets of the data sorting problem. One study

investigated the use of cluster analysis to solve the outlier
removal problem. Another study was concerned with the question

of sorting multiple linetracker target data into individual

target data sets. The final investigation concerned the use of

this single linkage clustering algorithm to sort multiple

signals from ambient noise found in frequency spectra data.

Qualified success has been found in using the cluster analysis

approach to solve these problems.

The major problem associated with the clustering

algorithm concerns automating the program to pick the optimal

set of clusters and to output these results in more useful
formats than the tree diagrams found in this report. As the

tree diagrams have shown, the clustering algorithm continues to

link the data until all points are joined into one conglomerate

cluster. The useful information to be gathered from the
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clustering tree diagrams falls at intermediate clustering

levels rather than at the final level. No fixed criteria have

yet been devised to automatically decide when the linking of

the clusters should be stopped. Since simulated data were used

in these studies, the optimal results were known a priori and

an appropriate clustering threshold level could be found. With

real data, this will not be possible. In general, the

following two observations can be made concerning the choosing

of optimal clustering levels. First, the good data were always

found in the upper portion of the tree diagram with most

outliers or random noise points being found at the bottom of

these diagrams. This is true because these trees are arranged

in order of increasing dissimilarity coefficients. Secondly,

the optimal clusters containing the true data were usually much

more tightly knit than the clusters which either joined data

from other targets or which included outliers into the

cluster. Perhaps some scheme can be devised which gradually

picks successively lower clustering levels in the tree diagram

until some optimal clusters are found. Great emphasis,

especially for separating signals from noise from the frequency

spectra and for outlier removal problems, should be placed on

analyzing the upper portion of the tree diagram. Another

possible improvement would be to standardize the data

normalization approach so that all of the raw data from each

buoy were normalized by the same scale factor. With such a

common scale factor, it may be possible to establish a fixed

threshold level for the clustering results. Regardless of how

it is accomplished, some criteria must still be developed which

determines how much of the upper portion of the tree diagram

should be analyzed and how this cluster should be further

sorted into clusters of individual target data.
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In reviewing the results of sections 5.6 through

5.8, it seems that the input data processing for the multiple

target problem should employ the following approach for DIFAR

data. First, a rather wide frequency band should be chosen for

observation which includes all of the possible narrowband

signals of interest. Next, some threshold test should be

employed which accepts most of the signal data plus some noise

data but which rejects most of the random ambient noise. For

all data that pass the threshold test, a 4-tuple of attributes

should be estimated which includes the time tag, the frequency

estimate or the frequency cell bin number, and the sine and

cosine of the bearing estimate. This set of attributes for all

the prospective signal data should then be analyzed by a two

stage clustering algorithm. The first stage of this clustering

phase would be used to separate the signal data from most of

the remaining random ambient noise found in the frequency

spectra. Assuming that the output from the clustering

algorithm has been suitably automated, the resulting signal

data would be separated from the noise and saved for another

round of clustering. The second clustering would serve two

purposes. First, it should remove the remaining outliers from

the signal data. Second, the algorithm should decide how many

targets are present and assign optimal clusters of data to each

of the targets believed to be present. It is felt that some

criteria can be developed to automate the clustering algorithm

to perform these tasks, but as yet, no obvious method has been

found. Perhaps with a proper data normalization scheme, some

of the problems concerning the automation of cluster analysis

output can be more easily solved. With futher development, it

is strongly felt that cluster analysis can be used to identify

data, determine how many targets are present, sort the data

into individual target sets and eliminate any outliers that do

not truly belong in a given data set.
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6.0 RECOMMENDATIONS FOR FUTURE INVESTIGATIONS

Upon completion of the current contract, it is

evident that considerable work remains to be done in the area

of multiple target tracking. In connection with this, several

future tasks have been identified. The first two of these

tasks are concerned with improving the capability to sort

multiple target data. Other tasks are concerned with utilizing

the sorted data properly to track the multiple targets

described by the data. These proposed tasks are generally

presented in the required order for their logical development.

A few concluding comments address long term work on multiple

target tracking.

6.1 Continued Search for the Optimal Clustering

Technique

First, it is felt that the search for the optimal

clustering algorithm must be continued. This initial study has

shown that CLUSTAR's single linkage algorithm and Ling's (l,r)

algorithm were the best of the algorithms tested for the data

sorting problem associated with multiple target data. Both of

these algorithms are hierarchical, non-overlapping, single

linkage clustering algorithms. From the results of this study

and from heuristic reasoning, it is believed that either a more

generalized, hierarchical and non-overlapping single linkage

algorithm or an overlapping, non-hierarchical single linkage

algorithm may be better suited for the data sorting problem. A

brief discussion of these ideas follows.

One possible investigation on this topic concerns

the development of Ling's generalized (k,r) clustering algo-

rithm for k i I. Ling points out (Reference 11) that this
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algorithm should best be thought of as a generalization of the

conventional single linkage algorithms. The k and r control

parameters are used to determine the level to which objects or

clusters should be linked by the algorithm. This (k, r) algo-

rithm merges data into groups of k members that are all linked

within some distance r of the other members in the group. Both

k and r may be user inputs that would be used to determine how

much the data should be linked before the clustering process

would be stopped. It is believed that the (k, r) algorithm is

a necessary generalization of the single linkage algorithm

which should be easier to control and automate and which could

prove to be more useful for the data sorting problem than the

conventional single linkage algorithm.

A second clustering algorithm which should be

investigated is a non-hierarchical, overlapping algorithm.

This algorithm is referred to as the Moody and Jardine Bk

algorithm (Reference 8). It too is a generalization of the

single linkage algorithm. For this algorithm, the k parameter

is used to define the degree of overlap that is to be allowed

between two different clusters. For an overlapping clustering

algorithm such as this one, data are not always assigned to

only one cluster. Instead, data that cannot be clearly sepa-

rated into either cluster are placed into both and the clusters

are allowed to overlap at this point. This type of algorithm

may prove useful for pathological cases such as that found in

scenario 2 of this study when the data from two targets are so

similar that they cannot be readily separated. Rather than

assign the questionable data points co one target or the other,

it may prove to be more useful to assign these points to both

targets. This approach could be especially useful in

situations where target trajectories intersect or nearly inter-

sect. It may even be easier to automate this algorithm than
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the currently used hierarchical, non-overlapping algorithm, but

it is difficult to speculate until the algorithm has been built

and tested. Regardless, this Moody and Jardine Bk algorithm

is another approach to generalizing the conventional single

linkage algorithm which is felt to have potential and therefore

deserves consideration for future studies.

6.2 Automating the Multi-Target Clustering Algorithm

The best multi-target cluster algorithm deter-

mined from the previous task must be automated before it can be

used in any practical system. If the previous two algorithms

are developed and the results prove to be unsatisfactory, then

it will become necessary to attempt to automate the output of

the existing single linkage algorithm. In this context, auto-

mating means that the clustering algorithm will be modified to

decide for itself what the optimal number of clusters are and

how the data should be assigned to these clusters. A study of

attribute normalization is an essential feature of this task.

The clustering algorithm would also be modified to output the

data in a tabular form rather than in tree diagrams. Finally,

the samples for each cluster should be automatically reordered

to appear chronologically correct so that a tracking algorithm

could properly process the data. Some of the modifications

will require changes to the existing clustering packages and

others may require the development of some post processing

programs for the sorted data. Nevertheless, if cluster

analysis is ever to be successfully used to sort data for

target tracking problems, the clustering algorithms must be

automated to output the data in the form needed by a tracking

algorithm.
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6.3 Intersensor Data Matching Procedure

After some type of data sorting procedure has

been adopted, data from different sensors for the same targets

must be properly matched so that tracking solutions may be

obtained for all of the targets. With passive DIFAR data, only

frequency and bearing estimates are generated for each signal.

Previous studies have shown that frequency and bearing measure-

ments from only one sensor are usually insufficient for

initializing or tracking unless the data spans a considerable

range in frequency and bearing. When only passive frequencies

and bearings are to be used for target tracking, one should

have overlapping measurements from at least two sensors to

insure accurate, timely tracking results. For multiple target

problems, the question then becomes how to match the individual

target data sets from one sensor with those from another

sensor. One could simply use a trial and error scheme for

matching the data sets until reasonable solutions were found,

but some more organized and quicker scheme for doing this would

be preferred. There are several suggestions for solving this

problem.

One possibility would be to use the initial guess

procedure described in Section 2 to pick the most likely pair-

ings and to eliminate the impossible pairings of data sets from

two or more different sensors. If a reasonably accurate

initial guess is used, it would be possible to pair data sets

together to estimate an initial position and velocity guess for

that pair. Physical constraints on the range of the detection

systems and on the allowable velocities for ships could be used

to immediately eliminate impossible pairings of the data sets.

After the impossible pairings have been eliminated, the target

tracking algorithm could be initialized with the allowable
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guesses passed by the tracker's initial guess procedure. After

processing some more data, better estimates for positions,
velocities and accelerations from potential data pairings could

be found. Once again, physical constraints could be used to

eliminate the impossible solutions produced by certain pairs of

data sets. Basically then, a good initial guess procedure

would be more useful for eliminating impossible pairings of

data sets than for picking the most likely pairings of the

individual data sets. Nonetheless, such a process would be

extremely valuable in reducing the complexity of the data

matching problem.

A second approach would be to use the 0-1 integer

programming techniques as proposed by Morefield
(Reference 13). This approach would require the development of

a cost function which would be minimized by picking the correct

pairing of data sets for individual targets. The set of

pairings which minimizes this cost function would be chosen as

the proper pairings of data from that data set. The idea with

this approach would be to pick the most likely pairings of the

data out of all the possible combinations that could be

generated by a given buoy pair.

Another appealing approach would be to combine
the two techniques described above into a joint intersensor

data matching scheme. First, the initial guess procedure would

be used in conjunction with the physical constraints on the

targets and the measuring devices to eliminate the impossible

pairings of data sets. This could still leave possible pair-

ings of data sets from the different sensors that would exceed

the number of targets thought to be present in the observation

range. Next, the 0-1 integer programming approach could be

used to analyze the possible pairings and pick the most likely

set from these allowable pairs.
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This latter approach seems to be a very appealing

one to pursue. The initial guess and elimination procedure

should be fairly easy to implement and should prove to be

reasonably quick with regard to computer applications. The

integer programming approach will be more difficult to develop

and implement and will probably require substantial amounts of

computer memory and time to pick the optimal sets of data

pairing. If speed and memory limitations are to be important

considerations for this intersensor data matching problem, then
the integer programming technique should be used only when

necessary. If pairings can be eliminated before the data sets

are passed to the integer programming algorithm, substantial

savings in computer time and memory should result. Thus, in

the interest of simplifying the decision making process and of

speeding up this process, both of these approaches should be

merged to create an intersensor data matching procedure.

6.4 Other Problems

The three subjects discussed above are planned

areas of work for the near term. The following subsections

mention several other areas identified as requiring work. It

also discusses some major research topics in multi-target

tracking which are currently deferred to later investigations.

6.4.1 Identification of Redundant Data Sets - Another

topic which should be investigated concerns the identification

of multiple or redundant data sets for the same target as

observed by one sensor. If one observes a broad frequency band

to detect multiple narrowband signals, it becomes likely that

multiple lines from only one target will be observed in the

data. One cause for multiple signals would be the presence of
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harmonic multiples of a fundamental frequency from a given

target. When multiple signals from a single target occur, one

would like to be able to identify the multiple lines and group

them together for each of the targets. Being able to identify

redundant lines would be extremely valuable for determining how

many targets are actually present in a given set of frequency

spectra. Furthermore, if these multiple lines were identified,

one could pick only one line to be used for each target in the

intersensor data matching problem and substantially reduce the
number of possible combinations that need to be examined by

this processor. Thus, some sort of scheme for identifying

redundant lines from one target would be valuable in deter-

mining the total number of targets found in a given set of

frequency spectra and in reducing the complexity of the problem
to be solved by the intersensor data matching processor.

6.4.2 Compensation for Data Dropout - Another task that

warrants investigation concerns the compensation for data drop-

out that arises when acoustic data is gathered. A variety of

factors can lead to signal fading or possibly to periods of
data loss. These factors included propagation losses, smearing

losses, and random fluctuations in signal strength and ambient
noise levels. Some of the trial results not discussed in this

report showed that problems can be encountered with our data

sorting scheme when a signal temporarily fades from view. If

only one, two or maybe even three consecutive measurement

updates are lost, the cluster analysis algorithm could success-

fully continue to sort the data into correct data sets.
However, in cases where four or more consecutive update times

were encountered with no measurement output, the clustering

algorithm improperly sorted the data after the signal was

recovered. Rather than joining the data from before the

temporary data loss period to the data recovered after this
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loss, the clustering algorithm output two distinct clusters

which one would associate with two different targets. Clearly

the loss of data over this interval leads to data sorting

problems.

Two possible solutions to this problem can be

offered. One approach would be to prefilter the data to fit

some kind of curve or surface to the data. When no measure-

ments were output for given time points, one could use the

fitted curve to predict what a measurement value should have

been and use this value as a substitute for the missing

measurement update. Another approach would be to use a target

tracking algorithm to predict what the measurement value should

have been. Provided the tracker has converged onto a legit-

imate solution, the best estimates from the last time point can

be integrated forward to predict what the next measurement

should be. This predicted measurement could be used to replace

lost data when data dropout occurs. Either of these two

approaches will probably succeed, but only when the target

moves along a non-maneuvering, constant velocity trajectory.

If the target is involved in some kind of maneuver when data

loss occurs, neither of these prediction schemes are likely to

compute good estimates for the missing data points. These two

prediction schemes seem to be the most likely techniques to be

used to compensate for data loss, but both have some pitfalls.

It will not be known how effective either approach can be with-

out experimenting with some data sets and then analyzing the

results to determine the efficacy of these approaches.

6.4.3 Long Range Research Topics - Many other problems

exist which will need to be investigated before a robust

multiple target algorithm can be built. For instance, it is
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still not known if the matched multiple target data should be

processed by a bank of single target tracking algorithms

operating in parallel or if a new multiple target tracking

algorithm must be developed which updates all of the individual

tracks simultaneously. Still another task that merits research

would be the development of an a posteriori processor to deter-

mine if the data have been properly sorted by the clustering

process and then correctly matched with the intersensor data

matching processor. It seems that an a posteriori processor

could be merged with the cluster analysis and intersensor data

matching processor to develop a predictor-corrector type of

approach to the sorting problem associated with the multiple

target tracking problem.

Besides the problems mentioned, still other

questions are likely to arise as the investigations into the

multiple target tracking problem continue. However, the tasks

proposed here are believed to be a natural progression to the

work begun and described in this report. Qualified success has

been attained in our initial data sorting study and the

proposed tasks should lead to further progress on this diffi-

cult problem. Solutions from these tasks should lead to the

successful implementation of future target tracking systems.

For the present, however, it still remains to be seen if a

fully automated system can be developed to track multiple

targets even within constrained scenarios.

131



hcerAppledScience

7.0 REFERENCES

1. Corser, Glenn and Wilson, Thomas, Final Report, Hybrid

Passive Tracking Algorithms, Contract

N00014-78-C-0670, 31 October 1980.

2. Maybeck, Peter S., Stochastic Models, Estimation and

Control, Vol. 1, Academic Press, Inc., New York,

1979.

3. Escobal, Pedro Ramon, Methods of Orbit Determination,

Robert E. Krieger Publishing Company, New York,

1976.

4. Reeder, Hugh, Final Report, A Maximum Likelihood Pro-

cedure for Air ASW Program (U), Contract

N60921-79-C-0123, Tracor, Inc., Report

T80-AU-69-C, 15 May 1980.

5. Burden, Richard L., and Faires, J. Douglas, and

Reynolds, Albert C., Numerical Analysis, Prindle,

Weber and Schmidt, Boston, 1978.

6. Urick, Robert J., Principles of Underwater Sound for

Engineers, McGraw-Hill, Inc., New York, 1975.

7. Sneath, Peter H. A. and Sokal, Robert R., Numerical

Taxonomy, W. H. Freemand and Company, San

Francisco, 1973.

133



Traca Apphed Scieces

8. Jardine, Nicholas and Sibson, Robin, Mathematical
Taxonomy, John Wiley and Sons, Ltd., London, 1971.

9. Anderberg, Michael R., Cluster Analysis for
Applications, Academic Press, Inc., New York,

1973.

10. Marshall, Kim and Romesburg, Charles H., "CLUSTAR and

CLUSTID - Programs for Hierarchical Cluster

Analysis," The American Statistician, Vol. 34,

No. 3, August, 1980.

11. Ling, Robert F., "On the Theory and Construction of

k-Clusters," The Computer Journal, Vol. 15,

No. 4, November, 1972, pp. 326-332.

12. Ling, Robert F., "A Probability Theory of Cluster
Analysis," J. Am. Stat. Assoc., Vol. 68, No. 341,

March, 1973, pp. 159-164.

13. Morefield, C. L., "Application of 0-1 Integer
Programming to Multitarget Tracking Problems,"

IEEE Trans. Automatic Control, Vol. AC-22,

pp. 302-311, June, 1977.

134



Tracor Applied Scences

APPENDIX A

RESPONSE SURFACE METHODOLOGY (RSM) STUDY

OF THE HYBRID TRACKING ALGORITHM



ac Awld Siowc

A.0 INTRODUCTION

A significant task under this contract was to

analyze the performance and parameter dependence of the Hybrid

tracking algorithm. Three control variables were used in this

study. They were signal-to-noise ratio (SNR), data integration

time (INT), which coincided with the time between successive

measurement updates for this study, and buoy separation

distance (SEP). Performance of the algorithm was measured by

the following variables: the average distance error for the

tracking solutions (ADE), the predicted distance error (PDE),

i.e., the difference between actual and predicted position 300

seconds after the end of data acquisition, and convergence time

(CT), the time required for the batch initializer to converge

to a trajectory that is within 500 meters of the true

trajectory.

To perform the analysis of Hybrid's performance,

a statistical technique known as Response Surface Methodology

(RSM) was used.* RSM essentially uses multiple regression to

relate the response of a particular system or process to the

various inputs (independent variables) which are assumed to

affect it. The goal of RSM is to create a surface which

accurately reflects the system response function and then

explore this surface for extrema and optimal operating areas.

RSM is closely related to the field of experimental design and

most RSM plans or designs have their origins in the ideas

developed by statisticians working in the areas of analysis of

variance and statistical design of experiments.

* Myers, Raymond H., Response Surface Methodology, Allyn

and Bacon, Inc., Boston, 1971.
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A.1 Description of Independent Factors

In order to design the RSM experiment, decisions

had to be made on which factors should be used to investigate

the Hybrid's tracking performance. It was decided that of the

possible factors, data quality most affected the Hybrid's

tracking solutions; so the three factors which govern the data

quality were chosen for the independent RSM parameters. The

three independent parameters chosen were the separation

distance between sensors (SEP) in a triangular sonobuoy deploy-

ment pattern referred to as tri-tac pattern, the data inte-

gration time used to gather the data (INT), and the signal-to-

noise ratio of the transmitted signal (SNR). For this study

the integration time coincides with the data update rate and

the signal-to-noise ratio is the usual difference in the source

level and the ambient noise level in dB.

A.1.1 Sensor Separation Distance (SEP) - SEP was chosen

as an independent factor because the quality of the tracking

was strongly influenced by the placement of the sonobuoy

pattern used to observe the target. For all of the test design

points, an equilateral tri-tac pattern was used with sonobuoys

placed at each of the three vertices. The distance between

sensors was varied for each design point in such a fashion as

to allow the centroid of the pattern to remain fixed. In

actual practice, operators have some control over where sono-

buoys are initially deployed. Once the sonobuoys are dropped,

however, their motion is governed only by the ocean currents

and winds. For this study, it was assumed that the sonobuoys

were dropped onto precisely known positions and remained

stationary throughout the scenario. From the test design,

Hybrid's response to the positioning of the sonobuoys and to

their relative separation could be determined and analyzed so

that optimal separation distances could be found.
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A.I.2 Integration Time (INT) - The second independent

factor chosen was the data integration time (INT). For the

data simulation program used, it was assumed that the

measurement update equation was governed by

6T=

where is the resolution of the frequency measurement in Hz

and r is the integration time in seconds that is used to

generate the estimate. For this study, it -.as assumed that INT

coincided with the update intervals for generating the

frequency and bearing estimates. Reviewing this equation, it

can be seen that the resolution of the frequency estimate is

inversely proportional to INT. When INT is small, the

corresponding resolution of the frequency estimate will be very

coarse due to this inverse relationship. Conversely, to obtain

frequency estimates with a very fine resolution, large values

for INT must be used. This equation for relating resolution of

the frequency estimates to the integration time period chosen

is true for most passive acoustic detection systems that are

used. With this model, the trade-off between accuracy in

frequency estimates and data update intervals could be examined

to determine its effect on the tracking response of the Hybrid

algorithm. INT is a factor that an operator can control and

vary with time, so this RSM study will determine what values

for INT should be chosen to optimize Hybrid's tracking response.

A.1.3 Signal-to-Noise Ratio (SNR) - The last inde-

pendent factor chosen was the signal-to-noise ratio (SNR) of

the transmitted signal as measured one yard from the target.

This factor is completely removed from control of the

operator. It is only a function of the target's transmitted

A-3



Tram Appled Scen

signal strength and the ambient noise level of the ocean. The

transmitted signal strength varies from target to target and

the ambient noise level varies according to the sea state of

the environment. SNR, as detected at a sonobuoy receiver, is

also a function of the range from the target to the individual

buoy. The propagation loss for the signal passing through the

water is assumed to be 20 log (R) in dB, where R is the

magnitude of distance from the target to the sonobuoy's

receiver. The propagation loss is idealistic, but over the

ranges and depths involved, it is a reasonable approximation

for the purpose of this study. As will be detailed in

subsequent sections, other random fluctuations in signal

strength and ambient noise level are also assumed to influence

the computed value of SNR at the receiver. Basically, however,

SNR is a function of the signal strength, the ambient noise

level, and the distance between the target and receiver. The

only controlling factor an operator would have on SNR would be

to deploy the sonobuoys very close to the target, but

generally, the target p<sition will not be known very

accurately a priori. This may then be thought of as an

uncontrollable factor.

A.2 Response (Dependent) Factors for RSM Study

Three different dependent factors were used to

define Hybrid's response (i.e., performance) at the various

design points. The three responses used were the same as those

used previously (Reference 1) to quantify Hybrid's tracking

capabilities. Separate response surfaces were generated for

each of the response factors. The three dependent, or

response, factors used were the average distance error of the

estimates (ADE), the time where the Hybrid successfully

converged upon a satisfactory set of initial conditions (CT),
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and the distance error incurred by predicting the final

estimate forward five minutes after the last data point was

processed (PDE).

A.2.1 Average Distance Error (ADE) - ADE is one measure

commonly used to describe the accuracy of an estimated target

solution output by a target tracking algorithm. This measure

provides an indicator of how well tracker estimates fit the

actual trajectory over a portion of the trajectory where there

is data. ADE is defined as:

ADE = f I t o fo+ (y + YT)' dt,

where ( ) denotes the estimated solution at time t and the

subscript T denotes the true value at time t. ADE then

provides an average of the position error between the estimated

and the true target trajectory over the entire length of the

accumulated data stream.

A.2.2 Convergence Time (CT) - Unfortunately, ADE by

itself does not always provide a sufficient measure of the

tracking performance for a given tracker such as Hybrid. One

not only wants an algorithm that yields minimum ADE, but also

an algorithm which converges as rapidly as possible onto a

suitable estimate for the target's trajectory. For the Hybrid

in particular, quick convergence is preferred because the

tracker will switch from the computationally slower batch

initializer to the faster sequential tracker as soon as its

convergence criteria have been met. For this study, the

convergence time was chosen to be the time at which the tracker

switched from the batch to sequential filter and the tracking
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results eventually yielded position estimates that fell within

500 meters of the true position values. In cases where these

criteria were not met, a time which corresponded to the end of

the scenario was assigned to CT.

A.2.3 Predicted Distance Error (PDE) - The last factor

used to measure Hybrid's tracking response was PDE. This

measure is used to determine the Hybrid's capability for

prediciting a target's position five minutes after the last

data point has been processed. In general, tracking algo-

rithms, such as Hybrid, which use a suboptimal motion model

will often yield satisfactory results for CT and ADE, but will

prove to be a poor predictor. The predictive capabilities of a

tracker are of interest for weapons and sensor deployment.

This third factor combines position and velocity errors into a

single measure. From this study, control values are sought to

maximize Hybrid's predictive capabilities.

A.3 Orthogonal Central Composite Design (OCCD)

This RSM study, uses an orthogonal central

composite design (OCCD) to select the design points used to

generate the quadratic fits for the response surfaces. The

independent factors SNR, SEP, and INT were varied according to

this experimental design so that the quadratic response surface

could be obtained with a minimum number of design points. The

OCCD is essentially a 23 factorial design augmented by a

center point and axial points that are chosen so as to produce

zero correlation among all factors and, derivatively, their

coefficients. Geometrically, this design consists of a cube

with experiments being performed at the corners, the center

point, and the ends of axial lines passing through the center

and perpendicular to each cube face. Practically, this means
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that computer simulation runs were made with the SNR, SEP, and

INT values given at each of these design points. The values of

the three responses -- ADE, PDE, and CT -- were found at each

point and a quadratic surface relating each response to the

independent variables was constructed.

The OCCD is a standard RSM design. There are

several reasons for using it, among them are:

(a) To fit a quadratic surface, all factors, at

least, must occur at three levels. However,
3k  experimental designs (k factors each

occurring at three levels) contain large

numbers of experimental points which are

used to estimate higher order interactions

and not main effects, quadratic terms, or

first order interactions. An OCCD, on the

other hand, uses far fewer points and

estimates only main effects, quadratic

terms, and first order interactions.

(b) Since each factor in the OCCD occurs at five

levels, this design offers broader actual

experimental coverage of the area of

interest.

(c) The axial points can be chosen so that the

correlation between all the estimated

parameters is zero.

It can be seen that an OCCD presents an ideal

design for obtaining quadratic response surfaces. This design

uses a minimum of experimental points to obtain a fit, allows
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quadratic fits to be made for the data, and results in

uncorrelated estimates for the coefficients. Originally, one

OCCD was used which was fully expected to test the limits of

Hybrid's tracking capabilities. Unfortunately, some of the

experimental points yielded poor quality data which prevented

the Hybrid from converging onto an accurate solution. Rather

than use this poor initial design, it was decided to use a

second OCCD which would allow us to accurately model the

Hybrid's responses to values of the three independent factors

that fell within Hybrid's actual operating range. The first

design will be discussed next, along with a description of its

shortcomings. Following this, the revised OCCD that was used

for this study will be described and will be followed by

detailed analyses of the RSM results obtained from this design.

A.4 Description of the Two OCCD's Used

Originally, an OCCD was chosen that was intended

to test the limits of the Hybrid's tracking capabilities. Over
20% of the experimental data points failed to yield sufficient

data for the Hybrid to track the target. Problems were caused

by extremely poor quality data, lengthy periods of data droput,

and in some cases, insufficient data for the tracker to be

initialized. With such a large void in the data from this

design, it was decided that a reasonable, least squares,

quadratic fit would not be obtained so no response surfaces

were generated for this original design. The following is a

description of the design as well as a list of causes for the

problems encountered.

A.4.1 Original OCCD - Since this original OCCD was

intended to study the extremes of the Hybrid's performance,

wide ranges of values for the independent factors were used.
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At one end of the test values for each independent factor, very

good results were expected, while at the opposite end of the

test values, only marginal tracking results were expected.

Unfortunately, some of the expected marginal cases turned out

to be impossible for the Hybrid to handle. These results

emphasized the great care that should be taken in choosing

design points, because these points should provide useful

information about the actual operating range of the Hybrid

tracking algorithm.

The independent factors used for this RSM study

were SEP, SNR, and INT. The values for each of these factors

at each design level are given in Table A.I. The corresponding

target scenario used for this study, along with the buoy

positions for each design level are provided in Figure A.I.

Notice that a non-maneuvering target that passes through the

buoy field was used for this study. The simulated scenario

lasted for 20 minutes. For the SNR values given in Table A.I,

the values refer to the signal-to-noise ratio of the signal one

yard from the target, not at the sonobuoy's receiver. The

propagation loss incurred by the signal passing from the target

to the receiver are subtracted from this initial SNR value to

compute the SNR at the receiver. These SNR's are given in

units of dB. Values for SEP are given in meters. For SEP, the

centroid of each buoy pattern used for this study was fixed at

x - 0 meters and y - 3500 meters. The placement of the buoys

for each design level was adjusted so as to keep this centroid

fixed and to keep the tri-tac pattern in the shape of an

equilateral triangle. Finally, the INT values are given in

units of seconds. Recall that the resolution of the frequency

estimates in Hz is inversely proportional to INT.
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TABLE A.I

ORIGINAL OCCD

Factor (z) Mean () Delta (4)

SNR (dB) 70 8

SEP (m) 7500 2500

INT (sec) 25 20

Scaled axial point for a three factor OCCD:

a = 1.216

Transformation equation:

X

Experimental Design Values

Z x -a -1 0 +1

SNR (dB) 60.272 62 70 78 79.728

SEP (m) 4,460 5,000 7,500 10,000 10,540

INT (sec) 0.68 5.0 25 45 49.32

A-10



Trame Applied Sciencss

V.m)
A3
x

5000- 3

4000-

103

3000.

XE3
2000-

1000-
tf - 1200

E2 D2C2B2A

xAl

A-l



TrawrAp~u Scne

Problems were encountered at certain levels for

all of these parameters in this initial design. When the

values for SEP were greater than or equal to 10,000 meters,

insufficient data were obtained for the Hybrid to successfully

track the target. The separations were so wide that except for

SNR values that would be higher than any of our test values,

overlapping data from at least two sonobuoys could not be

obtained. Problems were also encountered when the SNR values

of 62 and 60.272 dB were used. Again, these values were so

small that no overlapping measurements from at least two

sensors were found. For the Hybrid to successfully track the

target, some interval of overlapping measurements from at least

two sensors is preferred to insure quality results. Finally,

severe problems were encountered when the smallest value for
INT, 0.68 seconds, was used to generate frequency and bearing

estimates. Two factors caused this problem. One factor was

that the resolution in the frequency estimate was so coarse

that little or no change in the frequency estimates was ever

seen. Secondly, the integration time is so small and the

frequency binwidth is so wide that very little signal is being

integrated into the ambient noise for an individual bin. This

resul:s in a severely reduced SNR for both the frequency and

bearing estimates which severely degrades the accuracy of these

estimates. The causes for the problems encountered with this

test design may then be summarized as follows:

(1) Two of the sensor separation distances were

too large.

(2) Two of the signal-to-noise ratios were too

small.

(3) One of the data integration times was much

too small.
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A.4.2 Revised OCCD - After the problems associated with

the original OCCD were carefully studied, a second OCCD was

created. This design sought to eliminate the problems

previously encountered so that accurate response surfaces for
Hybrid's tracking performance could be generated. To revise

the test design, the following criteria were used to eliminate

the problems previously encountered with the experimental data

set.

(1) The range of values for INT were reduced to

correspond more closely to rates most

commonly used for deployed sonobuoy systems.

(2) The center point of the design values was

fixed so as to eliminate very small values

for INT.

(3) The range of values for SNR was reduced so

that more realistic measurement could be

generated by the simulation program.

(4) The mean for the SNR values was increased so

that higher overall design values would be

used.

(5) The range of values for SEP was reduced so

that more overlapping of the individual

sonobuoy's observation ranges would occur.

(6) The mean of the values for SEP was also

reduced to assure more overlap in

measurements from the individual sonobuoys.
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(7) The centroid of all the tri-tac sonobuoy

patterns was moved closer to the initial

starting point of the trajectory to

guarantee that stronger signals and more

measurements would be available for track

initialization.

All of these factors were used to redesign the experimental

OCCD. The revised design points are given in Table A.II,

followed by a geometric representation of this design in Figure

A.2. Figure A.3 shows the scenarios used for this test design,

and Table A.III lists scenario parameters.

A.4.2.1 Summary of Results from the Revised OCCD - The

results from this OCCD were much improved over those from the

first design. The Hybrid was able to converge onto a solution

for all the experimental design points. For two of the design

points where SEP was large, the Hybrid converged onto a

solution, but this solution never converged to less than 500

meters error between the estimated track and the true track.

This was probably caused by too little overlap in measurements

from at least two sensors, preventing the Hybrid from

successfully converging onto the true trajectory. Since the

Hybrid never converged to less than 500 meters distance error,

a value of 1,200 seconds was assigned to these cases because

this time coincides with the final time of the simulated

scenario. The results from this revised OCCD experiment are

given in Table A.IV. Detailed analyses of the RSM results that

were generated for this experimental design are described in

detail in the next subsection.
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TABLE A.II

REVISED OCCD

Factor (z) Mean (v) Delta (A)

SNR (dB) 76 6

SEP (m) 6500 1500

INT (sec) 12.5 7.5

Scaled axial point for a three factor OCCD:

a = 1.216

Transformation equation:

X = A

Experimental Design Values

z -; cv -1 0 +1 +_

SNR (dB) 68.704 70.0 76.0 82.0 83.296

SEP (m) 4,676 5,000 6,500 8,000 8,324

INT (sec) 3.38 5.0 12.5 20.0 21.62
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INT
(76, 6500, 21.62)

--- "-SEP (70, 5000, 20) (70, 8000, 20)

SNR0

(82, 8000, 20) /

(82, 5000, 20)

k6 8 .7, 6500 12.5)

76, 6500, 12.5 ,,

(76, 4676, 12.5) , , (76, 8324,
, '12.5)

(70, 5000, 5.0),

- - - --.. . .- - --.. . . . . ... (70, 8000,
S5.0)

-- -_j- (83.3, 6500,1 12.5)
(50

(76, 6500, 3.38)

FIGURE A.2 - GEOMETRICAL REPRESENTATION OF THE REVISED OCCD
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TABLE A.III

DESCRIPTION OF REVISED OCCD'S SCENARIO

Initial Conditions for Target

to = 0 sec

x= -1000 m

YO= 0 m

Vo = 5 m/sec

90 = 750

Final Conditions for Target

tf = 1200 sec

xf = 553 m

yf = 5796 m

Vf = 5 m/sec

8f = 750

Centroid For All of

the Tri-Tac Patterns

x- 0 m

y - 2500 m

V 0 m/sec
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TABLE A.III (Continued)

Buoy Positions for Revised OCCD

Design
Scenario Level SEP (W) Buoy # X (M) Y (M)

A +a 8,324 1 -4,162 97

2 0 7,306

3 4,162 97

B +1 8,000 1 -4,000 191

2 0 7,17.8

3 4,000 191

C 0 6,500 1 -3,250 624

2 0 6,252

3 3,250 624

D -1 5,000 1 -2,500 1,057

2 0 5,386

3 2,500 1,057

E -a 4,676 1 -2,338 1,150

2 0 5,200

1 _ 3 2,338 1,150
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TABLE A. IV

RESPONSES FOR EACH TEST DESIGN LEVEL FOR THE REVISED OCCD

Design Levels Responses

Case SEP SNR INT CT ADE PDE
No. () (dB) (sec) (sec) (m) (m)

1 -1 -1 -1 112.50 273 677

2 -1 -1 +1 430.00 163 656

3 -1 +1 -1 32.50 61 383

4 -1 +1 +1 150.00 35 1015

5 +1 -1 -1 *1200.00 1053 2582

6 +1 -1 +1 370.00 451 589

7 +1 +1 -1 37.50 150 481

8 +1 +1 +1 130.00 65 104

9 0 0 0 218.75 297 404

10 -a 0 0 81.25 78 94

11 +a 0 0 *1200.00 2574 1602

12 0 -C 0 581.25 299 878

13 0 +a 0 168.75 87 234

14 0 0 -a 45.63 218 869

15 0 0 +t 140.53 104 206

*For these points, the Hybrid met its own convergence criteria,

but the tracking errors were never reduced below 500 m.
Rather than accept the output CT, the final time of 1200 sec.
was assigned.
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A. 5 RSM Results and Analyses of These Results

This section and all further discussions describe

the RSM results for the revised OCCD. Tables of the response

surface fits, the optimization and eigenvalue results, as well

as response surface contour plots are presented for each of the

three responses.

A.5.1 Description of RSM Tables - Tables A.V, A.VII,

and A.IX provide summaries of the analyses for the surfaces fit

to the three response factors. Note that each of these three

tables is divided into two sections. Descriptions of these

sections follow:

(a) Response Surface Values and Statistics -

This section contains information about the

surface analyses of the statistical

significance of the various estimated

parameters which defined this surface.

(b) Response Surface Analysis - This section

contains the information required to analyze

the particular surface which has been fitted

to the data.

Under section (a) the following pieces of

information are given:

(1) Coded Betas - With RSM we were fitting a

quadratic model of the form:

N N N-1 N
E(y) - BO + 2 B.Xi + BiiXi2 + B* i X j x i
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To prevent numerical problems encountered

when inverting a matrix which contains

values differing by several orders of

magnitude and to eliminate correlation

between the linear and quadratic terms in

the model, the Xi's are coded variables of
the form

z. -

X Z. where

Zi = the raw data value

Yi = the center point value

Ai - the distance from the center point
to the +1 level of that variable

in the factorial part of the OCCD

Thus, for SNR the coding is:

ZSNR - 76
XSNR = 6

For SEP the coding is:

ZSEP - 6500
XSEP " 5u- , and
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For INT, it is:

ZINT- 12.5
INT =  7.5

Since there are zero correlations among all

the coded variables, their squares, and

their cross-products, the response of the

dependent variable to a unit increase in one

of the independent variables can be deduced

directly from the model. Note, however,

that a unit increase in the coded variables

corresponds to an increase of A. in the

uncoded variables.

(2) Uncoded Betas - This column contains the

coefficients of the quadratic surface

expressed in uncoded form, that is, the

model which uses these uncoded coefficients

can use raw data to describe the response

surface.

(3) F-Value - For each coefficient, an F-value

is generated by computing the reduction in

the total variance, caused by inclusion of

this variable in the model, compared to the

estimate of the variance of the process.

This amounts to a test of hypothesis

H0  Bk = 0 , versus

H I  B k 4 0.
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If the F-value is greater than some critical

value for a particular a -level, then we

reject the hypothesis that the coefficient
is zero and assume that, statistically, it

is different from zero.

(4) a-Level - When testing any hypothesis, there

are two kinds of errors which may be

committed:

(a) Type 1 - To reject H0 when it is

actually true, and

(b) Type 2 - To accept H0 when it is

actually false.

The probability associated with Type 1
errors is called the size of the test and

one minus the probability associated with

the Type 2 error is called the power of the

test. What would be most desirable is to

both minimize the size and maximize the
power of the test. Unfortunately, with a

fixed sample size this cannot be done.

Instead, the size of the test is fixed at

some probability level, a, and the power is

maximized. Thus when it is said that a

hypothesis test is significant at an a - .1

level, it is meant that the probability of
Type 1 error has been fixed at 0.1 and the

power of the test has been maximized (the

probability of Type 2 error has been
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minimized). An asterisk in the a - .1 or

a .2 columns means that the hypothesis

test for this coefficient is significant at

this a level.

Under section (b) the following information

appears.

(1) One of the goals of RSM was to find an

optimum or near optimum set of operating

conditions for the response under

consideration. Because the fitted surface

was a quadratic, the usual techniques of

multivariate calculus used to find

stationary points was readily applied. This

section gives the coordinates of the

stationary point for this surface.

(2) Stationary Point Value - This gives the

value of the fitted surface at the

stationary point.

(3) Canonical Representation of Surface - In

matrix representation, the estimated surface

is given by

= b0 + b x + xTBx

where

b 0 - is the intercept
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is the vector 6b, 2 .. b n  of
estimates for the linear factors

x - is the vector (xl,...,x n )

B - is the matrix

K A A*

B11  B12 /2 ..... ln/2

B12 /2  B22 . B2n/2

.B n/.2 ................ Bnn

Through a series of suitable translations and

rotations, the equation above can be rewritten as:

^+ X 1 2 +. + XnWn

^ T= Y + Ww , where

Y0 is the value of the surface at the

stationary point

0X - [' -. on ]

where XI'' n are the

eigenvalues of the B matrix

Wl,...,w n  are the coordinate

axes in the eigenvalue system.
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W Mx

where M is a matrix consisting of the

normalized eigenvectors of B.

There are several things which can be

determined from the canonical representation

of the response surface:

(a) If all Xi's are negative, we have a

maximum point, if they are positive we

have a minimum point, if they are both

positive and negative we have a saddle

point;

(b) The 's indicate the directions of

greatest increase or decrease of the

response in terms of the w.

coordinate axes;

(c) This representation helps to determine

the shape and characteristics of the

response surface so that nearly optimum

operating conditions can be determined.

(4) x to w Transformations - This is the set of

linear equations that relates the

x-coordinates to the w-coordinates.
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Thus, when a particular operating point or

set of operating conditions is determined by

using the canonical form of the equations,

this transformation can be used to find the

appropriate set of x-values.

A.5.2 RSM Analysis of the Hybrid's ADE Response

Table A.V describes the response surface information for the

average distance error (ADE) data. Residual versus fitted ADE

plots, generated by the raw ADE values, indicated that as ADE

increased, the variance of the residuals increased. This is

the usual indication that a log transformation should be

applied to the dependent variable. The log transformation

succeeded in reducing the variance of the residual sum of

squares after the fit, so response surfaces of the following

form were generated:

1og10 (ADE) -bo 0  +x~

The regression F-value indicates a regression which is

significant at the cc = .1 level and the R2 value shows that,

after taking the mean into account, the surface accounts for

about 88% of the remaining variance in the data. The F-values

for the coefficients indicate that, by far, the most

significant factors are the linear SEP and SNR terms. Of

somewhat less importance are the linear and quadratic INT terms.

The analysis of this surface indicates that there

is a stationary point just outside the experimental region with

an ADE value of 146.0. The eigenvalues show that the

stationary point is a saddle point with the directions of

maximum decrease along the wI and w2 axes. From the x to w
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TABLE A. V

RSM RESULTS FOR LOG1 0 (ADE)

RESPONSE SURFACE VALUES & STATISTICS

VARIABLE CODED BETA UNCODED BETA F-VALUE a = .1 a .2

$0 2.28 -25.166

al (SEP) .322 - .000029 13.4 * *

S2 (SNR) - .334 .755 14.4 * *

a3 (INT) - .145 .0939 2.7 *

an .117 .519 x 10 -  .7

02 - .184 - .00511 1.7

33 - .205 - .00364 2.2 *

B12 - .047 - .518 x 10- 5  .2

S13 - .034 - .298 x 10 5  .1

- .0017 - .383 x 10- 4  0.0

Regression F - 3.95 - Significant at a = .1 R2  87.7

RESPONSE SURFACE ANALYSIS

Stationary Point Coordinates:

SFP = 4171.7 SNR = 71.7 INT = 10.8

Stationary Point Value:

146.0

Eigenvaiues:

i .00511 X2 = - .00364 A3 = 5.38 x 10-8
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TABLE A.V (Cont.)

X TO W TRANSFORMATION

wi-.000511 -1.0 .013 SEP 74.0

=l .0004 - .013 1.0 SNR + -11.55

W3,-1.0 .00051 .00041 INT 4171.7
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transformation, it can be seen that w1 direction corresponds

basically to the SNR and the w 2  direction corresponds

basically to INT. Thus ADE can be reduced by increasing SNR

and INT. Also, from the x to w transformation it can be seen

that w3 corresponds to SEP and the associated eigenvalue

indicates that decreasing sensor separation also decreases

ADE. Note, however, that all of the Xi's are quite small,

which indicates a fairly flat surface for the quadratic

response.

Figure A.4 and A.5 show the three-dimensional

plot and contour plot, respectively, for the log (ADE) response

for SNR - 68.704 dB. Table A.VI defines the values for the

contour symbols used in Figure A.5. The contour plot indicates

that the lowest ADE values occur for small separation distances

and long update intervals. There are two primary reasons for

this:

(1) Due to the previously described inverse

relationship, long integration times

correspond to very accurate data estimates.

(2) Once initialization has occurred, highly

accurate data measurements lead to more

accurate state vector estimates and thus

lower the distance errors.

However, as separation distances increase, the algorithm

becomes less and less sensitive to integration time. For large

separation distances, the same ADE occurs for the entire range

of INT's. This is especially true at low SNR values.
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TABLE A.VI

DEFINITION OF CONTOUR

SYMBOLS FOR LOG1 0 (ADE)

Symbol Contour Value

1 1.25

2 1.50

3 1.75

4 2.00

5 2.25

6 2.50

7 2.75

8 3.00

9 3.25

A 3.50
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SEP X 1000(m)

Figure A.5 CONTOUR PLOT OF LOG 1 0 (ADE) FOR SNR = 68.704
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A.5.3 RSM Analysis of the Hybrid's CT Response

Table A.VII contains the response surface information for the

convergence time (CT) data. As with the ADE data, residual

versus predicted CT plots generated by the raw CT values

indicated that as CT increased, the variance of the residuals

increased. A log transformation was applied to CT and a model

of the form

log 10 (CT) = Do + J- + -T

was fitted to the data. The regression F-value was significant

at the a = .1 level and the R2 value indicates that, after

adjusting for the mean, the surface accounts for about 87% of

the remaining variance in the data. From the coefficient

F-values, it can be seen that the important terms in the model

are linear SEP and SNR terms and, to a somewhat lesser degree,

the linear and quadratic INT terms.

The analysis of this surface indicates that there

is a saddle point which lies just outside of the experimental

region and the value of the function at this point is 113.9.

From the canonical representation, it can be seen that the

surface decreases along the w1 axis and increases along the

w2 and w3 axes. The w to x transformation shows that the

w2 axis corresponds to SEP, while the wI and w3 axes are

made up of both SNR and INT contributions. Figure A.6

illustrates the 3-dimensional plot generated by fixing SNR at

its lowest level(68.70 4 dB), and then graphing the resulting

equations as functions of SEP and INT. Figure A.7 is the

contour plot associated with this graph. Table A.VIII contains

a table of the values for the various contour lines. From the

contour plots, it is clear that minimum CT's occur for small

values of SEP and INT. Furthermore, as SNR increases, SEP
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TABLE A. VII

RSM RESULTS FOR LOG 1 0 (CT)

RESPONSE SURFACE VALUES & STATISTICS

VARIABLE CODED BETA UNCODED BETA F-VALUE a = .I = .2

2.26 14.94

81 (SEP) .218 .000844 5.8 * *

82 (SNR) - .329 - .366 13.2 * *

83 (INT) .171 .0118 3.5 *

Bi .084 .374 X 10-  .3

B2 .085 .00236 .4

833 - .316 - .00561 4.8 * *

812 .120 - .134 X 10-4  1.3

$13 .152 - .135 X 10-4  2.1

B23 .142 .00315 1.8

2

Regression F - 3.68 - Significant at a = .1 R = 86.9

RESPONSE SURFACE ANALYSIS

Stationary Point Coordinates:

SEP = 7302.1 SNR = 87.1 INT = 16.7

Stationary Point Value:

113.9

Eigenvalues:

x 1-.00591 A2 - 1.93 x 10 -8 A3 = .00266
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TABLE A. VII (Cont.)

X TO W TRANSFORNATION

WI .000913 -.187 .982 SEP - 6.77

W -1.0 -.0031 .00035 SNR + 7302.8

W .00294 -.982 -,187 INT 67.2
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TABLE A. VIII

DEFINITION OF CONTOUR

SYMBOLS FOR LOG10 (CT)

Symbol Contour Value

1 1.00

2 1.25

3 1.50

4 1.75

5 2.00

6 2.25

7 2.50

8 2.75
9 3.00

A 3.25

B 3.50

C 3.75

D 4.00
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Figure A.7 CONTOUR PLOT OF LOG1 0 (CT) FOR SNR =68.704
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becomes less and less important while INT retains its

importance.

A.5.4 RSM Analysis of the Hybrid's PDE Response - Table

A.IX contains the response surface information for the

predicted distance error (PDE) data. Residual plots indicated

that no transformation of the independent variable was

necessary, so the fitted model is of the form

PDE = bo + b x xTBX"

The regression F-value indicates significance at the a - .1

level and the R2 value is 89.0. The coefficient F-values

indicate that all of the linear terms are significant, the

quadratic SEP is significant, and all the two-factor inter-

action terms are significant. The eigenvalues for this system

indicate that the extremum for this response is a saddlepoint

that lies outside the test region.

The three-dimensional and contour plots for PDE

indicate several interesting things. (The contour symbol

values are presented in Table A.X) First, for low SNR values

as are shown in Figures A.8 and A.9, there is a very rapid

degradation in PDE as SEP increases. The optimal situation

occurs for highly accurate data measurement (large INT values)

with small to moderate SEP values. Thus, large areas of sensor

overlap in conjunct:.,n with high quality data can assure low

PDE values for low SNR values. Secondly, for a SNR value of

76.0 dB, Figures A.10 and A.II show that there is a wider range

of optimal values. Roughly, as SEP increases, INT must also

increase to keep PDE at a minimum value. Thirdly, for the high
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TABLE A. IX

RSM RESULTS FOR PDE

RESPONSE SURFACE VALUES & STATISTICS

VARIABLE CODED BETA UNCODED BETA F-VALUE L .1 a .2

718.36 3282.57

S1 (SEP) 260.91 1.9 5.71 * *

S2 (SNR) -301.65 - 144.27 7.6 * *

Ss (INT) -234.12 - 316.33 4.6 * *

257.43 .00011 2.2 *

22 60.26 1.67 .12

47.71 .848 .08

-331.26 - .036 6.7 * *

13 -372.69 - .033 8.5 * *

623 283.76 6.31 5.0 * *

Regression F - 4.5 - Significant at a = .1 R2 = 89.0

RESPONSE SURFACE ANALYSIS

Stationary Point Coordinates:

SEP - 3251.61 SNR = 65.31 INT = 7.18

Stationary Point Value

787.41

Eigenvalues:

- 1.919 12 = -2.36 x 10- 5  X3 4.441
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TABLE A.IX (Cont.)

W TO X TRANSFORMATION

wi- .0002 .66 -.752 SEP -37.16

W2 -1.0 -.0043 -.0036 SNR +3251.9

LW3.-0056 -.752 -.66 INT 35. 7
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TABLE A. X

DEFINITION OF CONTOUR

SYMBOLS FOR PDE

Symbol Contour Value

1 200

2 400

3 600
4 800
5 1000
6 1200

7 1400

8 1600

9 1800

A 2000

B 2500

C 3000

D 3500

E 4000
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SNR value of 83.296 dB, Figures A.12 and A.13 illustrate that

there is a wide range of conditions for minimizing PDE.

Essentially, as SEP increases, INT must increase also.

The interpretation of significant two-factor

interactions can be seen from Figure A.1l which shows the

contour plot of the surface that results from fixing SNR at its

average (- 76.0) value and allowing SEP and INT to wander over

their respective test ranges. Note that at low values for INT,

PDE goes high to low as SEP increases, while at high INT

values, PDE goes from low to high values as SEP increases. If

the two curves were plotted on the same axes, a pair of

intersecting parabolas would result. Thus, the meaning of a

significant SEP-INT interaction is that for the average SNR

value, PDE behaves quite differently for changes in SEP at low

INT values than it does for changes in SEP at high INT values.

The same reasoning applies to significant SEP-SNR and SNR-INT

interactions.

Thus, to minimize PDE there must be high quality

data for large buoy separation distances. For small sensor

separation distances, there must be a great deal of data with

quality being of less importance. The ranges over which these

statements apply vary, of course, with SNR.

A.6 Conclusions From This RSM Study

This RSM study has quantified Hybrid's

performance measures ADE, CT, and PDE as functions of three

independent factors -- SEP, SNR and INT. It must be emphasized

that these results were valid only for this particular scenario

and for those values of the independent factors that fell

within our test region. This particular scenario was for a
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nonmaneuvering target whose trajectory ran through the tri-tac,

sonobuoy pattern. The response surfaces could very well be

different for targets that used a maneuvering trajectory or

that used a trajectory that ran outside the sonobuoy field.

For each of the three Hybrid responses, their respective

extremum points fell outside the test region. These extrema

responses may not be accurate because the error of values

extrapolated outside the test region may increase rapidly.
Nevertheless, when one understands the limitations of this

approach, RSM techniques prove to be very useful for
quantifying Hybrid's response to the data gathering factors

SEP, SNR and INT. The results from this study appear to be

credible because they can be explained intuitively as they were

in previous subsections. The RSM approach has been a very

useful tool for examining Hybrid's tracking performance and can

be useful for examining the response of it and other trackers

in the future.
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